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ABSTRACT 

This thesis presents the use of data assimilation with optimal interpolation (OI) to 

develop atmospheric aerosol concentration estimates for the United States at high spatial 

and temporal resolutions. Concentration estimates are highly desirable for a wide range 

of applications, including visibility, climate, and human health. OI is a viable data 

assimilation method that can be used to improve Community Multiscale Air Quality 

(CMAQ) model fine particulate matter (PM2.5) estimates. PM2.5 is the mass of solid and 

liquid particles with diameters less than or equal to 2.5 m suspended in the gas phase. 

OI was employed by combining model estimates with satellite and surface measurements.  

The satellite data assimilation combined 36 x 36 km aerosol concentrations from CMAQ 

with aerosol optical depth (AOD) measured by MODIS and AERONET over the 

continental United States for 2002. Posterior model concentrations generated by the OI 

algorithm were compared with surface PM2.5 measurements to evaluate a number of 

possible data assimilation parameters, including model error, observation error, and 

temporal averaging assumptions. Evaluation was conducted separately for six geographic 

U.S. regions in 2002. Variability in model error and MODIS biases limited the 

effectiveness of a single data assimilation system for the entire continental domain. The 

best combinations of four settings and three averaging schemes led to a domain-averaged 

improvement in fractional error from 1.2 to 0.97 and from 0.99 to 0.89 at respective 

IMPROVE and STN monitoring sites. For 38% of OI results, MODIS OI degraded the 

forward model skill due to biases and outliers in MODIS AOD.  

Surface data assimilation combined 36 × 36 km aerosol concentrations from the 

CMAQ model with surface PM2.5 measurements over the continental United States for 

2002. The model error covariance matrix was constructed by using the observational 

method. The observation error covariance matrix included site representation that scaled 

the observation error by land use (i.e. urban or rural locations). In theory, urban locations 

should have less effect on surrounding areas than rural sites, which can be controlled 
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using site representation error.  The annual evaluations showed substantial improvements 

in model performance with increases in the correlation coefficient from 0.36 (prior) to 

0.76 (posterior), and decreases in the fractional error from 0.43 (prior) to 0.15 (posterior).  

In addition, the normalized mean error decreased from 0.36 (prior) to 0.13 (posterior), 

and the RMSE decreased from 5.39 µg m
-3

 (prior) to 2.32 µg m
-3

 (posterior). OI 

decreased model bias for both large spatial areas and point locations, and could be 

extended to more advanced data assimilation methods.  

The current work will be applied to a five year (2000-2004) CMAQ simulation 

aimed at improving aerosol model estimates. The posterior model concentrations will be 

used to inform exposure studies over the U.S. that relate aerosol exposure to mortality 

and morbidity rates. Future improvements for the OI techniques used in the current study 

will include combining both surface and satellite data to improve posterior model 

estimates. Satellite data have high spatial and temporal resolutions in comparison to 

surface measurements, which are scarce but more accurate than model estimates. The 

satellite data are subject to noise affected by location and season of retrieval. The 

implementation of OI to combine satellite and surface data sets has the potential to 

improve posterior model estimates for locations that have no direct measurements.           
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ABSTRACT 

This thesis presents the use of data assimilation with optimal interpolation (OI) to 

develop atmospheric aerosol concentration estimates for the United States at high spatial 

and temporal resolutions. Concentration estimates are highly desirable for a wide range 

of applications, including visibility, climate, and human health. OI is a viable data 

assimilation method that can be used to improve Community Multiscale Air Quality 

(CMAQ) model fine particulate matter (PM2.5) estimates. PM2.5 is the mass of solid and 

liquid particles with diameters less than or equal to 2.5 m suspended in the gas phase. 

OI was employed by combining model estimates with satellite and surface measurements.  

The satellite data assimilation combined 36 x 36 km aerosol concentrations from CMAQ 

with aerosol optical depth (AOD) measured by MODIS and AERONET over the 

continental United States for 2002. Posterior model concentrations generated by the OI 

algorithm were compared with surface PM2.5 measurements to evaluate a number of 

possible data assimilation parameters, including model error, observation error, and 

temporal averaging assumptions. Evaluation was conducted separately for six geographic 

U.S. regions in 2002. Variability in model error and MODIS biases limited the 

effectiveness of a single data assimilation system for the entire continental domain. The 

best combinations of four settings and three averaging schemes led to a domain-averaged 

improvement in fractional error from 1.2 to 0.97 and from 0.99 to 0.89 at respective 

IMPROVE and STN monitoring sites. For 38% of OI results, MODIS OI degraded the 

forward model skill due to biases and outliers in MODIS AOD.  

Surface data assimilation combined 36 × 36 km aerosol concentrations from the 

CMAQ model with surface PM2.5 measurements over the continental United States for 

2002. The model error covariance matrix was constructed by using the observational 

method. The observation error covariance matrix included site representation that scaled 

the observation error by land use (i.e. urban or rural locations). In theory, urban locations 

should have less effect on surrounding areas than rural sites, which can be controlled 
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using site representation error.  The annual evaluations showed substantial improvements 

in model performance with increases in the correlation coefficient from 0.36 (prior) to 

0.76 (posterior), and decreases in the fractional error from 0.43 (prior) to 0.15 (posterior).  

In addition, the normalized mean error decreased from 0.36 (prior) to 0.13 (posterior), 

and the RMSE decreased from 5.39 µg m
-3

 (prior) to 2.32 µg m
-3

 (posterior). OI 

decreased model bias for both large spatial areas and point locations, and could be 

extended to more advanced data assimilation methods.  

The current work will be applied to a five year (2000-2004) CMAQ simulation 

aimed at improving aerosol model estimates. The posterior model concentrations will be 

used to inform exposure studies over the U.S. that relate aerosol exposure to mortality 

and morbidity rates. Future improvements for the OI techniques used in the current study 

will include combining both surface and satellite data to improve posterior model 

estimates. Satellite data have high spatial and temporal resolutions in comparison to 

surface measurements, which are scarce but more accurate than model estimates. The 

satellite data are subject to noise affected by location and season of retrieval. The 

implementation of OI to combine satellite and surface data sets has the potential to 

improve posterior model estimates for locations that have no direct measurements. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

1.1.1 Motivation and importance of work 

Atmospheric particulate matter (PM2.5) [Seinfeld, et al., 2006] is the mass of solid 

or liquid particles less than or equal to 2.5m, suspended in a gas.  These particles are 

classified as fine aerosol particles and are composed of various species that include 

sulfates, nitrates, organic and elemental carbon, ammonium, sea salt, metal oxides, 

hydrogen ions, and water. Particulate matter is categorized as either primary aerosols, 

which are emitted directly to the atmosphere, or secondary aerosols, which are formed 

from gas to particle conversion processes. Primary aerosols are emitted directly from 

combustion sources such as forest fires, dust, sea salt and biological debris. Secondary 

aerosols are formed due to atmospheric gaseous reactions from chemicals released from 

power plants, industry, and automobile emissions. Natural sources of secondary aerosols 

include dimethylsulfade from the ocean; sulfate from volcanic gases; and organic 

aerosols from biogenic volatile organic carbon. PM2.5 has adverse effects on health and 

visibility [McMurry et al., 2005; Penner et al., 2001]. Since PM2.5 can penetrate and 

deposit deeply within the lungs, exposure to increased levels of fine particles has adverse 

effects on human health, especially to the cardiopulmonary system. Aerosols exert direct 

effects on climate and visibility from scattering and absorption and indirectly influence 

climate by cloud property modification. 

Constraining spatial patterns at surface-level PM2.5 is critical in estimating aerosol 

impacts, and in particular, PM2.5 exposure limits. However, PM2.5 concentration 

measurements from surface monitoring networks suffer from limited spatial resolution. 

Temporal resolution in the monitoring network varies from high (hourly) to moderate (1 

in 6 day sampling for some speciated PM2.5 samples). Assigning point measurements to 

represent ambient concentrations over large areas leads to errors in exposure 
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classification for epidemiological studies [Grahame, 2009; Adar and Kaufman, 2007; 

Jerrett et al., 2006; Ito et al., 2004; Zeger et al., 2000].  

An alternate exposure estimate of speciated fine particles based on chemical 

transport models has been in development for the past thirty years with the advantage of 

high spatial and temporal coverage. The air quality model produces hourly data, at any 

desirable horizontal (up to 1km) and vertical resolution. However, the models are still 

subject to improvements and developments. Improvements in the model output can be 

accomplished by improving both the meteorological and emission data used by the 

model, improving the chemistry and physics of the model, estimating pollutants at finer 

model resolutions, or post analysis methods that include statistical approaches like data 

assimilation (common in geoscience applications). 

Optimal interpolation has been shown to improve PM2.5 concentration estimates. 

This method combines estimates from air quality models with available measurements 

such as surface measurements or satellite retrievals. Data assimilation is a scheme that 

should be considered in conjunction with other methods of improving model skill, like 

refinements to emission inventories, meteorological data, or the chemistry that is used by 

the air quality models. Also proven to be effective are land use regression methods [Liu, 

et al., 2009] that combine meteorological data, satellite data, and land use factors to 

construct statistical models capable of estimating PM2.5 estimates for both spatial and 

temporal resolutions. In addition to the primary goal of constructing high spatial 

resolution PM2.5 estimates as exposure values, the current study is also applicable to other 

aerosol science questions such as aerosol-climate interactions and visibility applications.  

1.1.2 PM2.5 effects on human health 

Surface measurements have been used for epidemiological studies by using 

regression models to test associations between pollution levels and mortality and 

morbidity rates. Fine particles have been associated with an increase in respiratory 
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diseases, cardiovascular disease, lung cancer, and cardiopulmonary mortality [Franchini, 

et al., 2009; Pope Iii, et al., 2002; O'Connor, et al., 2008; Schwartz, et al., 2000; 

Dockery, et al., 1993]. A recent study [Pope, et al., 2009] over a 30 year period 

demonstrated an increase in individual average life span of about one year associated 

with the decrease in PM2.5 concentrations over the three decades. Studies conducted to 

approach aerosol effects on human health have been beneficial to the health community 

in general, although these studies have a problem of misrepresenting the true atmosphere. 

The following section describes a few of these studies. 

1.1.3 PM2.5 exposure misclassification studies 

Surface measurement studies are subject to exposure misclassification because of 

the scarce spatial and temporal PM2.5 data available in the United States. Assigning point 

measurements to represent ambient concentrations could lead to biases in regression 

models. Zeger et al. [2000] performed a time series study over three months discussing 

the errors associated with using site measurements to represent atmospheric 

concentrations. Health risk estimates were influenced by differences in the average 

personal exposure and the atmospheric concentration where the difference between 

individuals and the weighted average personal exposure were minimal. Ito et el. [2004] 

compared speciated PM2.5 over three monitors and showed that the correlation coefficient 

of source-apportioned PM2.5 could vary between different site location measurements. Ito 

et el. [2004] stated that biases in PM2.5 population exposure could be caused by the lack 

of monitors in certain geographic areas.  

Jerrett et al. [2006] studied the relationship between particulate matter and chronic 

health diseases over ten years, and showed the relative risk of mortality is underestimated 

by two to three times due to exposure misclassification. In a study examining exposure 

misclassifications, Samet et al. [2007] emphasized that despite exposure 

misclassifications occurring due to the use of sparsely distributed PM2.5 monitors, PM2.5 
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was also found to have an impact on short term health exposure risks. Upon evaluation of 

multiple epidemiological studies focusing on exposure misclassifications, Grahame 

[2009] demonstrated that studies using deficient exposure information actually produced 

results that underestimated the effects of black carbon on humans. Adar et al. [2007] 

acknowledged the effects of using central monitors as ambient concentrations in his study 

of cardiovascular disease due to traffic exposure. Assigning equal exposure to people 

within 100 meters of the roadway could lead to misclassification. Exposure rates were 

equally assigned for people who lived within five meters, and exposure rates for people 

living in areas further than five meters exponentially declined. Another potentially 

valuable method of inferring PM2.5 concentration is satellite remote sensing products 

explained in section 1.1.5                     

1.1.4 CMAQ relation to health studies 

Chemical transport models (CTMs) provide alternate concentration estimates for 

fine particles, with more complete spatial and temporal coverage and the advantage of 

explicit representation of speciated PM components. Studies with the Community 

Multiscale Air Quality model (CMAQ) have shown that particulate matter model-

measurement agreements are variable and that model estimates are associated with 

biases. Examples of surface measurement networks used in the current study are the 

Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation 

Trends Network (STN) [U.S. Environmental Protection Agency (EPA), 2005; Spak et al., 

2009; Yu et al., 2008]. Marmur et al. [2006] compared source apportionment results from 

CMAQ with receptor-based model results to evaluate source-resolved exposure estimates 

for use in health studies. Marmur et al. [2006] concluded that model-based estimates 

have higher spatial resolution but show limited skill at reproducing day-to-day observed 

variability. Russell [2008], in a review of multiple studies [Yu et al., 2005; Seigneur et 

al., 2004; Tesche et al., 2006; Boylan and Russell, 2006], stated that typical model skill 
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was quantified at a normalized error of 25-50% using daily average observation-model 

pairs. Nitrate seasonal biases and organic carbon underestimation were identified as 

major sources of error. Appel et al. [2011] used WRF and CMAQ v4.7 to evaluate 

multiple species including PM2.5 for North America (including portions of Canada and 

Mexico) and Europe for 2006 and showed comparable errors and biases to both previous 

studies and this work. Although models demonstrate skill at a variety of spatial and 

temporal scales, improvements in modeled concentrations are still needed to increase 

model performance to the level required for many applications. These improvements may 

come through better model mechanisms, more refined input data, or observational 

constraint. Tagaris et al. [2009] studied the impact of changing CMAQ PM2.5 estimates 

on decreasing air quality pollutants in urban and rural areas over 50 years. The simulation 

was conducted over the United States, starting from 2001 at a resolution of 4° latitude by 

5° longitude. Mauzerall et al. [2007] changed PM2.5 concentrations over the continental 

United States for January and July of 1996 at a 36km model resolution using CMAQ. 

Model results showed an increase in mortality rates by a factor of ten with increases in 

human exposure.  

Studies have shown substantial discrepancies between model output and surface 

measurement networks such as IMPROVE and STN [EPA, 2005, Spak, et al., 2009, Yu, 

et al., 2008]. Although models can generally estimate both seasonal and temporal values 

up to one hour, improvements are still needed to increase model performance.  

1.1.5 Satellite data 

Given the limited spatial coverage of PM2.5 monitoring, researchers have been 

evaluating the feasibility of satellite remote sensing, geospatial analytical methods, and 

chemical transport models to derive high-resolution PM2.5 estimates. PM2.5 concentration 

can be inferred at high spatial resolution with the aid of satellite data. Among many 

sensors aboard different satellites, Moderate Resolution Imaging Spectroradiometer 
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(MODIS) instrument [Levy, et al., 2009] aboard Terra and Aqua has been particularly 

useful in developing high resolution estimates of Aerosol Optical Depth (AOD) and 

deriving PM concentrations [Li et al, 2005; Kumar et al. 2011]. MODIS became 

operational on the Terra satellite in early 2000 and on the Aqua satellite in mid-2002. 

Radiative forcing models are applied to retrieve AOD, a dimensionless number that 

quantifies extinction of light in the atmospheric column [Levy et al., 2009]. AOD values 

higher than 1.0 correspond to low visibility and high PM levels caused by fires, sand 

storms, or extreme urban air pollution. Studies have shown that MODIS column AOD is 

correlated with surface PM2.5 concentrations [Kumar et al., 2008; Schaap et al., 2009; 

Engel-Cox et al., 2005]. Several groups have taken advantage of this correlation to 

produce PM2.5 exposure estimates based solely on satellite data [van Donkelaar, et al., 

2010; Al-Hamdan, et al., 2009; Wu, et al., 2006] that could relate to health studies. Land 

use regression methods are also employed for PM2.5 exposure estimation [e.g. Liu et al., 

2009]. These studies use statistical models trained on PM2.5 measurements and land use 

data.  

1.1.6 Data assimilation 

Data assimilation is a valuable tool for improving forward model state towards a 

better estimate of the prior model values. Data assimilation [Kalnay, 2002] combines 

observations with data to generate a posterior dataset sharing features of the background 

and the observations.   The background data are hence referred to as the model data in the 

current work. Observational data can be ground, satellite, or aircraft measurements, in 

addition to remote sensing other than satellite (e.g. Lidar and Doppler data).  

It is important to understand data assimilation methods and their differences in 

order to determine which method to apply for the current work. Optimal interpolation 

(OI) [Lorenc, 1981] is a multivariate statistical method that is computationally efficient 

and is applicable to atmospheric or numerical forecast models. OI is one of many data 
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assimilation methods, which include nudging, multivariate statistical methods, 3D-var, 

evolving forecast error covariance, and balancing the initial conditions.  In addition to 

these aforementioned methods, other advanced data assimilation methods include 

ensemble and extended Kalman filter as well as 4D-var. The methods mentioned above 

vary by their computational burden and the quality of their results. Some are 

computationally efficient with satisfactory or even substantial results, while others are 

very computationally intensive and lead to better results. Following is a brief summary of 

the differences between the methods mentioned above and an explanation of the rationale 

for choosing OI as the data assimilation method in this study. 

Nudging [Hoke and Anthes, 1976, Kistler, 1974], which has a low computational 

burden, is a data assimilation method that nudges the background towards the 

observations and is used with meteorological data to improve model predications. 

Nudging has no theoretical or statistical basis and simply pushes the models towards the 

observations; its advantage is its ease of use due to its low computational needs.  

Optimal interpolation (OI) is more computationally expensive than nudging and 

includes the spatial errors (weights) for the model and the observations. The posterior 

value is achieved from the difference between the observations and the model data 

weighted by the errors and added to the initial state of the model. Thus, due to the way OI 

is implemented, low computational cost is achieved with high computational capability 

possible as long as the statistical errors are accurate or accurately constrained.   

Kalman filter [Kalman, 1960] is similar to OI with a minor difference in the 

model error covariance calculation; OI calculates a constant estimate whereas Kalman 

filter uses the model to calculate the error covariance matrix. To achieve this, the model 

error is assumed to be unbiased, and the model linear; however, assuming the model error 

is unbiased could cause unrealistic results or add error to the model. Kalman filter, which 

has proven to provide similar results as OI in some cases [Flemming et al., 2004], has a 

higher computational expense than OI.  
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Another method of estimating the true posterior value is the variational cost 

function approach [Sasaki, 1970], which changes the initial state of the model instead of 

adjusting the posterior value. This is done by adjusting a control variable with respect to 

which the cost function is minimized. The control variable can be any physical variable 

of the system, such as initial conditions or boundary conditions, or any model parameter 

(i.e. concentration, temperature, pressure, boundary layer, extinction coefficient, and 

etc.). The variational method has two parts; one minimizes the difference between the 

observation and prior model value, and the other minimizes the difference between the 

prior and posterior value. Both are weighted, respectively by the inverse of the 

observational and by the model error covariance. The variational cost function approach 

is used for 3D-var and 4D-var data assimilation. 3D-var [e.g., Sasaki, 1970, Parrish and 

Derber, 1992] includes a variational cost function that has a three dimensional field. Per 

the definition above, the distance between the analysis to the model and observations are 

weighted by the inverse of the error covariances for the background and observations, 

respectively. 3D-var has a more accurate posterior state than OI, which could be due to 

the fact that 3D-var uses all the observations in the domain simultaneously, whereas OI 

creates windows with confined sizes that restrict the observations to the windows. In 

other words OI restricts the effect of any observation on all the grid cells of the domain. 

Also, the model error covariance matrix in OI is assumed to be constant, unlike 3D-var, 

where the model covariances are estimated from the average of multiple analysis-model 

differences from short range data assimilation forecasts. Furthermore, 3D-var propagates 

adjustments in the control variables according to the linear or nonlinear transport and 

chemistry of the system, rather than through only statistical relationships as OI. 3D-var 

does not account for variation of observation over time, which is included in 4D-var.      

3D-var (as well as some other methods) can define the model error covariance in 

a general approach that differs from localized OI calculation, using more global methods, 

which are described as follows for sparse and dense observational networks. The 
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National Centers for Environmental Prediction (NMC) approach, [Parrish and Derber, 

1992] scales the magnitude of the covariance by acquiring multiple error samples over 

the domain, which could be defined as the model bias at each available site (model–

observation) corrected by the averaged model bias over the domain. This method is 

appropriate for networks that have less dense observational data. For networks that have a 

dense network of observation through the domain, the observational method 

[Hollingsworth and Lonnberg, 1986] is used to calculate a more dependable estimate of 

the model error covariance. The observational method is explained in detail in the method 

section.  

Advanced data assimilation methods are computationally expensive, but have the 

possibility to provide better posterior products. Assuming that the error covariance 

matrixes are constant over time could add additional errors to the data assimilation 

model; this is where more advanced methods excel. 4D-var, Ensemble or extended 

Kalman filter calculate the change of error over time using an adjoint model, which is a 

linear tangent model, to advance a perturbation backwards from the final time to the 

initial time. Extended Kalman filter [Jazwinski, 1970] uses an adjoint model to forecast 

the evolved error covariance matrix that is used in the analysis step.  If a sufficient 

number of observations are available over time, extended Kalman could provide best 

assimilation results compared to the less computational demanding methods, even if the 

model starts with a poor initial guess. Unfortunately, updating the model errors over time 

using the adjoint model adds high computational cost to the model and in many cases is 

replaced with the simple constant error, due to time restrictions. Therefore, extended 

Kalman filter is one of the most expensive computational methods [Kalnay, 2002].  

Ensemble Kalman filtering [Houtekamer and Mitchell, 1998] runs an ensemble of 

simultaneous data assimilation cycles independently, which reduces the extended Kalman 

filter computational time. 4D-var is an extension of 3D-var data assimilation over time, 

4D-var includes a summation of the difference between observation and the prior model 
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value over time with its initial state, which uses adjoint model as described above. 

Finally, 4D-var [e.g., Lewis and Derber, 1985, Courtier and Talagrand, 1990] is one of 

the most efficient data assimilation methods.  It has a higher computational expense 

compared to OI, but is computationally less expensive compared to Kalman filter. OI is a 

low computational data assimilation method that shares similar advantages as more 

advanced methods to inform model estimates using observation data and incorporation of 

error information for both model and observations. 

1.1.7 Data assimilation studies 

Data assimilation methods have been used to improve forecasting and model 

estimates using surface measurements. Nudging is mostly used to improve 

meteorological forecasts with surface measurements, where improving meteorology is 

one of the crucial steps for a good atmospheric model outcome. Multiple studies have 

shown that nudging has managed to improve simulation of atmospheric boundary layer 

[Alapaty et al. 2001], soil moisture [Pleim and Xiu, 2003], and surface wind [Stauffer and 

Derber 1990] forecasts. The Weather Research and Forecasting (WRF) model uses 

“observational-nudging” [Liu et al., 2005] for fine grid multi scale domains. Flemming et 

al. [2004] compared OI to a Kalman filter implementation by combining surface ozone 

and nitrogen dioxide measurements with the REM/CALGRID [Stern et al., 2003] 

chemical transport model, over central Europe for July 2001. Both OI and Kalman filter 

results were comparable, showing a similarity for the assimilation of ozone 

concentrations, and a better performance for Kalman filter when assimilating nitrogen 

dioxide.  

3D-var has been used to improve both meteorological predictions [Le Dimet et al., 

1986; Talagrand et al., 1987] and air quality model estimates. Liu et al. [2011] used 3D-

var to assimilate MODIS AOD and modeled derived-AOD from the coupled online 

Weather and Research and Forecasting-Chemistry model WRF-Chem to improve PM10 
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model estimates over East Asia for March 2010. The control variables used to minimize 

the cost function included 14 aerosol species for the entire horizontal and vertical 

domain. The aerosol species include hydrophobic and hydrophilic OC and BC, sulfate, 

sea salt in four particle sizes, and dust particles in five particle sizes. Comparing posterior 

model values with surface PM10 measurements showed that the assimilation gave a 

modest improvement over variable days of the month. 

Pagowski et al. [2010] used 3D-var to improve the air quality forecast for both 

ozone and PM2.5 by assimilating surface measurements using WRF-Chem in the north 

east of the United States during August and September 2006.  The control variables used 

to minimize the cost function were ozone and PM2.5 boundary conditions and multiple 

meteorological data (i.e. temperature, pressure, relative humidity, and velocity potential). 

The NMC method was used to calculate the model error covariance. The assimilation 

improved ozone and fine particles for a 24hr forecast. Bei et al. [2008] used 3D-var 

assimilation to improve ozone simulation over Mexico City, from the Comprehensive Air 

Quality Model with extensions (CAMx) [ENVIRON, 2006], by assimilating predicted 

wind circulation, temperature, and humidity. The control variables used to minimize the 

cost function were wind and ozone to improve the model estimate. The NMC method 

was used to calculate the model forecast errors. The research provided an insight into 

how 3D-var assimilation could provide improved posterior ozone over a four day episode 

in April 2003.  

Mallet et al. [2007] described the air quality model Polyphemus that contains four 

data assimilation procedures, including OI, ensemble Kalman filter, reduced-rank square 

root Kalman filter [Heemink et al., 2001], and 4D-var. The reduced-rank square root 

method is used to solve Kalman filter problems by reducing the covariance matrix rank, 

and is known as variance reduction. The ensemble Kalman filter method improves 

forecast and the chemical transport model concentrations. Hanea et al. [2004] used 

Kalman filter and the reduced-rank square root Kalman filter to assimilate ground level 
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ozone from the chemical transport model EUROS [van Rheineck Leyssius et al., 1990; 

van Pul et al., 1996; Matthijsen et al., 2001] over Europe for June 1996. The control 

variables used were ozone measurements and deposition rate and NOx and VOCs 

emissions. Surface ozone data assimilation results were more accurate than the forward 

model.  

Hakami et al [2005] used 4D-var to assimilate black carbon over East Asia in 

April 2001 using the chemical transport model STEM-2k1 [Carmichael et al., 2003] and 

observational data. The control variables used to minimize the cost function were the 

anthropogenic and biomass burning black carbon emissions, the boundary conditions, and 

the initial conditions. Thus posterior black carbon was driven by scaling the input to the 

chemical transport model. Ten observation sites and platforms were available; six sites 

were used for data assimilation and two aircraft measurements were used for evaluation 

of posterior model results. 4D-var managed to significantly improve the posterior model 

values. Carmichael et al. [2007] gave direction for the use of 3D-var and the advanced 

data assimilation methods to improve meteorological model predictions and air quality 

model estimates, showing the advantages and challenges of using computationally 

expensive data assimilation methods. 

1.1.8 Satellite and surface optimal interpolation studies 

Optimal interpolation was first used for PM2.5 to assimilate the Model of 

Atmospheric Transport and Chemistry (MATCH) and satellite AOD over the Indian 

Ocean [Collins et al., 2001]. The assimilation improved the model AOD bias, as 

compared with AOD from a sun photometer, from -0.12 to -0.02. Yu et al. [2003] 

assimilated AOD at a global scale in 2001, using MODIS and the Goddard Global Ozone 

Chemistry Aerosol Radiation and Transport (GOCART) model. AOD estimates were 

compared to Aerosol Robotic Network (AERONET) AOD, and the coefficient of 

determination increased when assimilation was applied. A similar approach was used to 
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assimilate MODIS AOD with the Sulfur Transport dEposition Model (STEM) output for 

Asia over the period of 2001-2004 [Adhikary et al., 2008]. Chung et al. [2010] and 

Adhikary et al. [2008] combined monthly modeled AOD and monthly MODIS and 

AERONET AOD over Asia. Park et al. [2011] performed data assimilation over East 

Asia using CMAQ AOD and MODIS AOD. 

Satellite measurements could be affected by many factors, such as cloud 

contamination or surface reflectance retrieval errors due to satellite dependence on land 

cover and land use (e.g. snow cover and bright surfaces). So regardless of the satellite’s 

spatial and temporal availability, the valid retrieval could add limited aerosol information 

that depends on the satellite’s spatial location and seasonal retrieval. Surface 

measurements are sparse locations with limited temporal availability ranging from 3 to 7 

days for daily average measurement. In spite of its limitations, it could provide valuable 

aerosol information at and around the site location, whether temporally averaged or not.  

The following cites multiple data assimilation methods that combine both surface and 

model data that have shown improvements in model estimates. Optimal interpolation 

could be a viable tool for assimilating surface and model data due its low computational 

cost and effective results.  

Tombette et al. [2009] applied the optimal interpolation method of Collins et al. 

[2001] using surface PM10 measurements and aerosol concentration fields from the 

chemical transport model Polair3D. The assimilation was over Europe for January [2001] 

and was carried out at each time of measurement availability. The assimilated model 

estimates were used as initial conditions for the model. So, if the measurements occurred 

every three days, then data assimilation was done at the time of the measurement, and the 

posterior estimate was used as the initial condition to start the model, which would run 

for three days until the next measurement. The Balgovind approach [Balgovind et al, 

1983] was used to calculate the model error covariance matrix. Tombette et al. [2011] 

used three observational networks to perform data assimilation and kept two networks for 
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data validation.  Compared to one of the networks, the results showed an increase in 

correlation from 62% to 88%, and a decrease in RMSE from 12.5 to 8.4 ug.m
-3

. 

Wu et al. [2008] compared four data assimilation methods: optimal interpolation, 

reduced-rank square root Kalman filter, ensemble Kalman filter, and 4D variational 

assimilation. The study improved ozone forecasting using the surface measurements and 

the chemical transport model Polyphemus [Mallet et al., 2007] over Western Europe for a 

12 hour forecast in early July 2001. The assimilation was conducted by using two grid 

resolutions. The full resolution, with a 0.5 degree grid cell size, assimilating and 

forecasting for subsequent days between July 1
st
 and 8

th
. The coarse resolution, with a 2 

degree grid cell size, assimilating ozone between July 1
st
 and 2

nd
 for a July 2

nd
 and 3

rd
 

forecast. The model error covariance matrix was also based on the Balgovind approach 

[Balgovind et al, 1983] for both OI and the initial data of the assimilation period for 4D 

var. The results show that all four data assimilation methods improved the ozone forecast 

when compared to the forward model. OI delivered the best ozone forecasting 

improvement over the four methods, which is due to the stability of the model errors 

calculated by the Balgovind approach [Balgovind et al, 1983].  

The current work is motivated by the ability to conduct exposure studies over the 

U.S due to the availability of mortality and morbidity data. Compared to other regions or 

countries the dense surface PM2.5 measurement network gives us the ability to conduct 

surface OI and provide a thorough model evaluation. This thesis adapts OI for data 

assimilation over the U.S. in 2002, for both satellite and surface measurements, motivated 

by the low computational needs of the method, the relatively modest requirements for 

model and observation error statistics, and the documented successes of the method in the 

literature. This work is different from previous satellite OI studies because it investigates 

different model-observation averaging methods for four error values. The surface OI will 

be different from previous studies that incorporate the observation method to calculate 

model error covariance and a representation error for the influence of an urban or rural 
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cite in the calculation of observation error covariance. Also a simple cross validation 

method will be used for satellite OI, compared to a more comprehensive cross validation 

method used for surface OI, which is considered novel for chemical transport OI 

evaluation. Also cross validation methods were applied for validation, which have not 

been used for assimilated chemical transport model validation before. These methods 

were adapted from regression model studies. The ability to provide accurate estimates of 

hourly PM2.5 concentrations over the United States for long periods would be a 

significant benefit when relating PM2.5 concentrations with epidemiological studies.  

1.2 Overview of thesis 

The current study includes assimilation of satellite and surface measurements with 

model data over the United States for the year 2002. Chapter 2 describes the detailed 

objectives of the current work. The methodology used in the current work has been 

included in the respective chapters of the thesis.  Chapter 3 describes CMAQ model 

implementation to produce 3D PM2.5 data speciated hourly over the United States in 

2002. A description of the model-dependent emissions and meteorological data are 

included.  Model estimates were compared and evaluated with surface PM2.5 speciated 

measurements. Chapter 4 describes satellite data assimilation methods (including 

mapping procedures), optimal interpolation of satellite data with model AOD, annual 

evaluation of model values with surface PM2.5, and comparison with previous studies. 

Chapter 5, which describes surface data assimilation methods and results, includes: the 

observational method and surface OI equations; cross validation methods; results from 

the observational method, OI case study for January, OI annual evaluation, and surface 

OI sensitivity study; and discussion and conclusions. Chapter 6 summarizes the thesis 

and provides recommendations for future work. 
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CHAPTER 2: OBJECTIVES 

The purpose of this thesis was to improve fine particulate matter (PM2.5) estimates 

from the Community Multiscale Air Quality (CMAQ) model that are able to simulate 

pollutants at high spatial and temporal resolutions using optimal interpolation (OI). 

To accomplish this multiple objectives are needed: 

Quantify how well OI works with MODIS retrieval over the Unites States. This is 

accomplished by comparison of CMAQ PM2.5 output with PM2.5 surface observation 

measurements for both rural and urban areas. CMAQ PM2.5 output was simulated for the 

year 2002 to obtain hourly aerosol concentrations. 

Propose a best OI strategy for U.S and explain the results. This is accomplished 

by comparing MODIS AOD valid retrievals with AOD surface observations from 

AERONET sites. The comparison is expected to give an understanding why OI works in 

certain regions and months based on how well MODIS is compared to AERONET, where 

AERONET is considered to be a more accurate measurement than MODIS. 

Quantify how well OI works with MODIS retrieval at a finer spatial resolution 

over the United States. In this analysis MODIS 10km data is replaced with retrievals at 

2km resolution. MODIS retrieval at a finer resolution eliminates errors caused by cloud 

contamination and misrepresentation of water-land areas. The quality assurance flag 

associated with MODIS retrievals reflects how well a valid retrieval can be trusted for 

data processing. 

Quantify how well OI works with surface measurements over the United States.  

In this analysis MODIS 10km data is replaced with surface measurements. The use of 

surface PM2.5 data will eliminate the uncertainty associated from both satellite retrievals 

and calculations that enable the model and satellite data to be quantified.     
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CHAPTER 3: PERFORMANCE OF CMAQ PM SIMULATION - 

FORWARD MODEL 

The chapter gives an overview of CMAQ, followed by the description of model 

input data that includes both emissions and meteorology data. This is followed by 

description of the following work and model results. CMAQ 2002 aerosol concentrations 

within the United States domain were evaluated on a seasonal basis dividing the country 

into six regions (Figure 2). The seasons were defined as winter (December-February), 

spring (March-May), summer (June-August), and fall (September-November) and 

regions are according to U.S. Census divisions [U.S. Census Bureau, 2000]. cmaq
2.5PM  

performance was evaluated using MFB and MFE (equations 9 and 10).  

3.1 CMAQ overview 

CMAQ [Byun, et al., 2006] was developed in 1999 to simulate atmospheric multi-

pollutants at high time resolutions at both regional and urban scales.  This atmospheric 

chemical transport model simulates ozone, acid deposition, visibility, and fine particulate 

matter throughout the troposphere. Figure 3.1 is the schematic diagram of the main 

models and processors utilized by the CMAQ model. Meteorology and emission data are 

the key elements that are translated through CMAQ's chemical transport model (CTM). 

CTM integrates CMAQ's governing equations, transport algorithms, gas phase chemistry, 

and the chemistry and dynamics of both aerosols and clouds.  The Meteorology-

Chemistry Interface Processor (MCIP) translates the meteorology data that is needed by 

the emission model and CTM. The processor also computes cloud parameters, surface 

and planetary boundary layer (PBL), and coordinate system transformation.   
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Figure 3.1 Schematic diagram of the CMAQ modeling inputs. 

Initial and boundary conditions are required as individual concentrations for the 

model grids and surrounding domain. CMAQ is accompanied by clean-troposphere 

vertical profiles for use as boundary and initial conditions, but can also use previous 

modeling data from other chemical transport models. The photolysis processor creates 

lookup tables of photo-dissociation reaction rates that are required by CTM. CMAQ is 

also supported with surface site compare program (sitecmpV1.0) and visualization tools 

that can be used for post-analysis of hourly gridded pollutant concentrations. 

3.2 Aerosol model in CMAQ 

Binkowdki et al. [2003] described the aerosol model component in CMAQ, which 

is explained briefly. Aerosols are small liquid and solid particles in the atmosphere, 

where the particles modeled are of the size 10m and smaller. Representation of particles 

in the CMAQ includes total number concentration, total mass concentration, and size 

distribution. The aerosol model is represented by three lognormal subdistributions called 

“modes”. Two modes are called fine modes and represent particles with diameters less 
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than or equal to 2.5 m. One of the two fine modes is the Aitken mode, which represents 

particles created from nucleation or from direct emissions, and another mode which is for 

larger particles called the accumulation mode, which represents aged particles. Particles 

with the size range between 2.5m and 10m are called coarse particles (PM2.5-10), which 

is the third mode in the dynamic aerosol model. Coarse mode particles are primary 

composed of sea salt and wind-blown dust. The aerosol particle diameter is a function of 

the geometric mean diameter and the geometric standard deviation, which are 0.03m 

and 1.7 for the Aitken mode, 0.3m and 2.0 for the accumulation mode, and 6m and 2.2 

for the coarse mode respectively.     

3.3 National emission inventory 

The national emission inventory (NEI) [references are found from the EPA at 

http://www.epa.gov/ttn/chief/net/2002inventory.html] is a government sustained emission 

rate database for the Unites States and neighboring countries (i.e. Canada and Mexico). 

Only the emission rates for areas in the United States are collected and recorded by the 

U.S. environmental protection agency (USEPA). NEI records emission rates based on 

emission factors generated from source emission measurements per level of activity (e.g. 

annual production rates). The inventory covers all criteria air pollutants (CAPs) which 

include PM10, PM2.5, sulfur oxides, volatile organic carbon, nitrogen oxides, carbon 

monoxide and lead. Also the inventory covers hazards air pollutants (HAPs), where lead 

is included in both CAP and HAP lists. Emissions are categorized differently depending 

on source types. 2002 NEI contains point, non-point, mobile, biomass burning, and 

fugitive dust sources. Emissions for both Mexico and Canada are available and provided 

from the respective governments.  

Point sources are specifically identified by sector location such as electrical 

generating units, forest fires, and fugitive dust. Non-point sources are identified by area 

sectors such as forest fires not included in point sources, agriculture burning, and fugitive 
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dust. Mobile sources are collected from on-road mobile emissions from vehicle emissions 

and non-road mobile emissions identified by area are collected from aircraft, locomotive 

and commercial marine emissions. 

3.4 Observation data 

Filter-based measurements of PM2.5 from IMPROVE and STN (24-hour averages 

collected every three and six days, respectively) were used to evaluate the model and 

select favorable assimilation settings. IMPROVE monitors (n=133) are predominantly 

located in remote and rural areas, while STN monitors (n=128) are located mainly in 

populated areas (Figure 3.2). 

 

Figure 3.2 IMPROVE, STN, and AERONET monitoring sites over the continental United 
States for 2002 with regions used in the study shown. 
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3.5 Chemical transport model 

CMAQ version (v4.6) [Byun et al., 1999] output are hourly speciated PM2.5 

concentrations at 36 km horizontal resolution over the continental United States, with 14 

vertical layers from the surface to the stratosphere. Model settings included the Carbon 

Bond (CB05) chemical mechanism [Sarwar et al., 2008] and advection by the piecewise 

parabolic method. Aerosols were modeled using the CMAQ AE4 [Binkowski and 

Roselle, 2003] and ISORROPIA (v1.7) aerosol thermodynamics [Nenes et al., 1998]. The 

simulation was carried out for all of 2002, with a ten-day spin up time from December 

2001. Clean continental background initial and boundary condition vertical profiles were 

used [USEPA, 1999]. 

Emissions for the model were constructed using the Sparse Matrix Operating 

Kernel for Emissions (SMOKE) [Houyoux et al., 2000] (v2.3) and the USEPA National 

Emission Inventory (NEI) 2002 [U.S Environmental Protection Agency (EPA), 2006]. 

Biogenic emissions were calculated from modeled meteorology using BEIS3 (v3.12). 

Wildfire emissions [U.S Environmental Protection Agency (EPA), 2008] were based on 

daily point locations and emission values for wildfires, managed burning, and prescribed 

forest burning, and non-point locations from average fire sectors based on county total 

emission estimates for managed burning and prescribed forest burning. When a fire is not 

available at spatial and temporal resolutions that are required to be included in the point 

fire inventory, it is categorized under non-point fires [U.S Environmental Protection 

Agency (EPA), 2008]. Meteorological data were provided by the Lake Michigan Air 

Directors Consortium [Baker, 2004] from the Mesoscale Meteorological Model (MM5) 

(v3.6.1) described by Grell et al. [1995, available at http:// 

www.mmm.ucar.edu/mm5/documents/mm5-desc-doc.html]. The Meteorology-Chemistry 

Interface Processor (MCIP) (v3.3) was used to prepare meteorological data for CMAQ 

and SMOKE.  
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3.6 Performance metrics 

cmaq
2.5PM  and 2.5MP   were compared to surface measurements from IMPROVE and 

STN networks. Metrics used to characterize model skill include mean fractional bias 

(MFB), mean fractional error (MFE), root mean square error (RMSE), and correlation 

coefficient.  Following Morris et al. [2005] four performance categories are used in this 

work: excellent [|MFB| <0.15 and MFE < 0.35]; good [|MFB| < 0.30 and MFE < 0.50]; 

average [|MFB| < 0.60 and MFE < 0.75]; problematic [|MFB| > 0.60 or MFE > 0.75].    

The equations for MFB and MFE are [Boylan et al., 2006]: 
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And Also the Normalized Mean Error (NME) was calculated for Surface OI 
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where Cm and Co are the model and observation concentration at site i 

respectively, and N is the number of paired model and observation concentrations. The 

ratio of MFE to a target MFE, ]C)C/)CC(5.0exp(C[MFE 32mo1etargt  ,with 1.5, 0.75, 

and 0.6 for C1, C2, and C3, respectively [Morris et al., 2005], is defined as the Fractional 

Error Score (FES) in this paper.  It is used as the criteria for the selection of successful OI 

schemes and parameter settings. The target MFE is taken from Boylan et al. [2006]. The 
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target MFE is 0.6 at high concentrations, and then relaxes to larger errors at PM2.5 

concentrations below ~4 µg m
-3

 to reflect the anticipated high fraction errors under such 

conditions. 

3.7 PM2.5 performance evaluation 

Table 3.1 lists the results of PM2.5 performance evaluation for each season and 

region. Although the results of the current work apply best to the specific model 

configuration used (e.g. 36 km resolution, CMAQ v. 4.6, MM5 meteorology), evaluation 

of the model results suggests comparable prior model skill to a number of North 

American CMAQ implementations, and the conclusions about data assimilation should 

apply broadly to a wider range of model configurations.  Month-region specific 

evaluation show lower fractional bias and fractional error at STN sites than at IMPROVE 

monitoring stations. At STN sites the model performance was better in the eastern U.S. 

than in the west. cmaq
2.5PM  is underpredicted in summer in most regions, resulting in some 

“problematic” performance classifications relative to IMPROVE.  In fall, performance 

generally falls into good and average categories. 

Negative PM2.5 biases were widespread in most months of the year due to organic 

carbon and nitrate underprediction. Organic carbon model performance in summer was 

characterized by negative biases for the whole United States except for IMPROVE 

monitors in the Mountain region. The most significant organic carbon negative biases 

occurred in summer in the Northeast region, and ranged from about -3.5 to -5.5 µg m
-3

. A 

significant negative bias (-6.2 µg m
-3

) occurred in the Pacific in November at STN sites. 

Organic carbon biases could be due to the underestimation of secondary organic aerosol, 

for example from biogenic isoprene oxidation [Yu et al., 2007]. Nitrate is underpredicted 

in summer for the United States with exception of the Midwest. Nitrate underprediction 

in the western U.S. was also significant for majority of the year at urban locations. The 

most significant nitrate biases were a -6 µg m
-3

 bias in the Pacific (November, STN), and 
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+2.1 µg m
-3

 in the Northeast (March, IMPROVE). Differences between measured and 

modeled nitrate aerosol could be potentially caused by both measurement errors and 

model errors in total ammonia and sulfate [Yu et al., 2008]. Sulfate performance was 

categorized as average throughout the year in all the regions. Both elemental carbon and 

ammonium simulations had excellent performance in various regions and seasons, 

although their influence on the model concentrations is mostly low. 

To verify that the forward model runs used as the input for OI are representative 

of typical skill in regional model studies, comparisons to previously published work were 

performed. Spak et al. [2009] and the current work fall within one performance category 

of one another for all seasons; there are two instances of better performance in Spak et 

al., and two instances of better performance for the current work. Eder et al. [2006] 

evaluated CMAQ’s annual performance over the United States for 2001 both spatially 

and temporally, and reported temporal correlation coefficients of 0.5 for STN sites and 

0.7 for IMPROVE sites; throughout the domain the bias ranged between ±25% for both 

networks. Yu et al. [2008] modeled at 12 km horizontal resolution summer 2004 PM2.5 in 

the eastern United States (equivalent to the Northeast and South Atlantic domains in the 

current work) and reported PM2.5 biases in July/August of -2.6 (STN) and -5.1 µg m
-3

 

(IMPROVE), compared to -6 and -6.6 µg m
-3

, respectively, in the current study. The 

studies listed above are consistent with the Russell [2008] review of model skill (typical 

model skill of normalized error of ~25-50%, using daily average observation-model 

pairs). More recent evaluation [Appel et al., 2011], incorporating the latest version of 

CMAQ (v4.7), is also consistent with seasonal mean bias and mean error ranging 

between -0.60 to 4.00 µg m
-3

 and 4.4 to 6 µg m
-3

, respectively.  
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Table 3.1 cmaq
2.5PM  performance at both IMPROVE and STN networks based on Morris et al. metrics

1
. 

 IMPROVE STN 

 Winter Spring Summer Fall Winter Spring Summer Fall 

  FE  FB  PC FE  FB  PC FE  FB  PC FE  FB  PC FE  FB  PC FE  FB  PC FE  FB  PC FE  FB  PC 

Pacific 0.77 0.47   P 0.57 -0.08 A 0.62 -0.37 A 0.57 -0.08 A 0.64 -0.32 A 0.53 -0.19 A 0.57 -0.42 A 0.62 -0.36 A 

Mountain 0.51 0.15  A 0.71 -0.62 A 0.91 -0.88  P 0.55 -0.26 A 0.58 -0.47 A 0.51 -0.32 A 0.61 -0.56 A 0.52 -0.37 A 

Midwest 0.47 0.28  G 0.51 -0.29 A 0.73 -0.71 A 0.48 0.16  G 0.40 0.24  G 0.38 -0.04 G 0.39 -0.28 G 0.40 0.20  G 

South Central 0.52 0.09  A 0.72 -0.58 A 0.89 -0.87  P 0.60 -0.07 A 0.47 0.10  G 0.60 -0.42 A 0.63 -0.53 A 0.48 -0.05 G 

NorthEast 0.72 0.67  A 0.41-0.05  G 0.60 -0.54 A 0.49 0.17  G 0.47 0.39  G 0.3 -0.05   E 0.47 -0.34 G 0.41 0.07  G 

SouthAtlantic 0.50 0.12  A 0.52 -0.35 A 0.72 -0.65 A 0.49 -0.13 G 0.44 0.08  G 0.44 -0.23 G 0.60 -0.56 A 0.45 -0.16 G 
 

1
Fractional Error (FE), Fractional Bias (FB), and PC (Performance Classification) Excellent, Good, Average, and Problematic. 
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3.8 PM2.5 speciated performance evaluation 

CMAQ PM2.5 speciation monthly performances at both IMPROVE and STN sites 

in 2002 are shown in Figure 3.3. Where the annual performance for both networks shows 

that the model is biased low compared with the observations. 

 

  

Figure 3.3 CMAQ PM2.5 Speciated (IMPROVE and STN) CMAQ Monthly performance 

2002. MFB less than or equal to ±30% are considered good, MFB larger than 

±30% and less than or equal to ±60% are considered average, and MFB larger 

than ±60% are considered problematic.  



www.manaraa.com

27 
 

 

3.8.1 Sulfate 

Table 3.2 shows evaluation of sulfate based on monthly performances at both 

IMPROVE and STN networks for each region. Comparing model to both IMPROVE and 

STN networks, CMAQ has a good performance in winter and an average performance in 

spring and summer. In fall model performance varies from good to average. Only in 

summer at the Pacific, CMAQ has a problematic performance in STN sites. Sulfate has 

an above average performance throughout the year, where certain biases could be due to 

the chemical equilibrium partitioning of sulfate, aqueous sulfuric acid and gaseous SO2 

[Spak, et al., 2009; Yu, et al., 2005].    

Table 3.2 Sulfate performance at both IMPROVE and STN networks based on Morris et 

al. metrics   

 IMPROVE 

 Pacific Mountain Midwest South Central Northeast South Atlantic 

Winter Average Good Excellent Good Good Good 

Spring Excellent Average Average Average Average Average 

Summer Good Average Average Average Average Good 

Fall Excellent Good Good Good Average Good 

 STN 

 
Pacific Mountain Midwest South Central Northeast 

South 
Atlantic 

Winter Good Average Good Good Good Good 

Spring Average Average Average Average Average Average 

Summer Problematic Average Excellent Average Good Good 

Fall Average Average Good Good Average Good 

 

3.8.2 Nitrate 

Table 3.3 shows evaluation of nitrate based on monthly performances at both 

IMPROVE and STN networks for each region. With the exception of the Midwest 
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region, CMAQ is problematic in summer for the whole United States. The model 

performance at STN sites for the central and east parts of Unites States are excellent to 

average, but are problematic in the Pacific and Mountain regions. Modeled nitrate has a 

better performance in urban areas from rural parts.  Differences between measured nitrate 

aerosol and modeled nitrate aerosol could be potentially caused by both measurement and 

model errors on total ammonia and sulfate [Yu et al., 2005].  

Table 3.3 Nitrate performance at both IMPROVE and STN networks based on Morris et 
al. metrics  

 IMPROVE 

 Pacific Mountain Midwest South Central Northeast South Atlantic 

Winter Good Problem Excellent Good Problem Good 

Spring Average Average Good Problem Good Problem 

Summer Problem Problem Problem Problem Problem Problem 

Fall Average Average Good Good Good Average 

 STN 

 Pacific Mountain Midwest South Central Northeast South Atlantic 

Winter Problem Problem Excellent Excellent Average Excellent 

Spring Average Problem Excellent Average Excellent Average 

Summer Problem Problem Good Problem Problem Problem 

Fall Problem Problem Average Good Good Average 

 

3.8.3 Organic and elemental carbon 

Table 3.4 shows evaluation of organic carbon based on monthly performances at 

both IMPROVE and STN networks for each region. Organic carbon model performance 

in summer is problematic for the whole United States except for the Pacific and rural 

areas at the Mountain region. Model estimate is excellent to average for spring and fall, 

but variable in winter. Table 3.5 shows evaluation of elemental carbon based on monthly 
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performances at both IMPROVE and STN networks for each region. The model 

performance is excellent at urban areas in the United States, except for the Mountain 

region. Compared to IMPROVE sites the model has an excellent to average performance 

over all regions and seasons.  

Organic carbon biases could be due to the underestimation of secondary organic 

carbon from isoprene oxidation, which is mostly from biogenic emissions. CMAQ has a 

good performance for elemental carbon compared to both networks for all regions during 

the year but elemental carbon has small influence on PM2.5 concentration. Model 

representation of elemental carbon could be explained by accurate representation of soot 

in the emission inventory that is measured at urban areas.   

Table 3.4 Organic Carbon performance at both IMPROVE and STN networks based on 
Morris et al. metrics  

 IMPROVE 

 Pacific Mountain Midwest South Central Northeast South Atlantic 

Winter Problem Average Average Excellent Problem Excellent 

Spring Average Excellent Average Problem Good Average 

Summer Excellent Average Problem Problem Problem Problem 

Fall Good Excellent Excellent Average Good Average 

 STN 

 Pacific Mountain Midwest South Central Northeast South Atlantic 

Winter Average Problem Excellent Average Average Good 

Spring Good Good Excellent Average Excellent Good 

Summer Average Problem Problem Problem Problem Problem 

Fall Problem Average Good Average Excellent Average 
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Table 3.5 Elemental Carbon performance at both IMPROVE and STN networks based on 
Morris et al. metrics  

 IMPROVE 

 Pacific Mountain Midwest South Central Northeast South Atlantic 

Winter Excellent Average Excellent Good Average Excellent 

Spring Excellent Average Average Average Excellent Average 

Summer Good Average Average Problematic Average Average 

Fall Good Average Excellent Good Excellent Average 

 STN 

 Pacific Mountain Midwest South Central Northeast South Atlantic 

Winter Excellent Problematic Good Excellent Good Excellent 

Spring Excellent Average Good Good Excellent Excellent 

Summer Good Average Excellent Excellent Excellent Excellent 

Fall Excellent Problematic Good Excellent Excellent Excellent 

 

3.8.4 Ammonium 

Table 3.6 shows evaluation of ammonium based on monthly performances at STN 

sites for each region. The model showed excellent to average estimations of ammonium 

concentrations, which agrees with both studies conducted by Scott et al. [2009] and 

Morris et al. [2005]. Ammonium measurement is available only at STN sites.  

Table 3.6 Nitrate performance at the STN network based on Morris et al. metrics  

 
Pacific Mountain Midwest 

South 
Central 

Northeast 
South 

Atlantic 

Winter Excellent Problematic Good Excellent Good Excellent 

Spring Excellent Average Good Good Excellent Excellent 

Summer Good Average Excellent Excellent Excellent Excellent 

Fall Excellent Problematic Good Excellent Excellent Excellent 
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3.9 Performance evaluation compared to previous studies 

A Comparison of the Midwest region with the Great Lakes study performed by 

Spak et al. [2009] shows a number of similarities and differences. The similarities are that 

CMAQ estimates the highest PM2.5 concentrations in winter, the model overpredicts 

PM2.5 in fall and winter, and when compared to IMPROVE sites, the model has an 

underprediction of PM2.5 in summer and an overprediction in the winter. The differences 

in model performance between the two studies are when CMAQ's evaluation is compared 

to STN sites. In the Great Lakes region the model's best estimates are from April to July, 

and the present work shows better performance in April through May and August through 

September when compared to STN sites. The modeling differences from the work of 

Spak et al. and the present study are the emission inventory and the modeling domain. 

NEI 2002 data were used in the present study compared to 2001 NEI data used for 

modeling CMAQ estimates over the Great Lakes. The Great Lakes domain is half the 

size of the Midwest region, which implies fewer sites for model-observation comparison.       

Key aspects of present results are consistent with studies by Yu et al. over two 

domains. The first [Yu, et al., 2008] evaluation of PM2.5 concentrations was over the 

eastern United States for summer 2004 and used NEI 2001 data. PM2.5 concentrations 

were underpredicted in comparison with both IMPROVE and STN networks. The second 

[Yu, et al., 2007] compared IMPROVE and STN site measurements with Organic and 

Elemental carbon from the model output for the United States domain in 2001, which 

also used NEI 2001 data. The results of Yu et al. showed an underprediction of primary 

organic carbon due to missing sources in the emission inventory and the absence of 

isoprene and sesquiterpenes oxidations in the model, which led to an underestimation of 

secondary organic aerosols.       

Recent studies incorporate the Weather Research and Forecasting (WRF) model 

[Skamarock et al., 2008], a successor to the MM5 meteorological model used in the 

current study. Appel et al. [2010] used CMAQ v.4.7 to compare MM5 with WRF for 
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January and August of 2006 for the eastern United States. Both models showed similar 

median errors. Conclusions from the current work (based on MM5) likely apply to WRF-

based simulations. 

Coarse PM (i.e. PM10-2.5, referred to in this paper as PMcoarse) was underpredicted 

over all regions throughout the year with the most pronounced bias equal to -8 µg m
-3

 at 

sites in the South Central (May), Mountain (May), and the Midwest (July) regions. 

Several investigators have demonstrated similar PMcoarse underprediction [Wang et al., 

2002; Tonnesen et al., 2004; Boylan et al., 2006].  
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CHAPTER 4: SATELLITE DATA ASSIMILATION 

4.1 Introduction 

Satellite data has proven to be effective in improving model-derived AOD over 

Asia and the Indian Ocean in previous studies using OI [Collins et al., 2001, Yu et al. 

2003, Adhikary et al., 2008, Park et al. 2011]. Descriptions of those previous studies are 

presented in section 1.1.8. Following the methodologies used over Asia would provide 

improvements for model estimates over the U.S., because of the better availability of 

surface PM2.5 data to evaluate model performance after OI, compared to the scarcity of 

surface measurements in Asia. The novel part of this work is represented by the 

averaging method used as data assimilation inputs for the model, in addition to the four 

different OI settings used for each of the averaging methods. This chapter focuses on the 

outcome of these methods and settings and their impact on the posterior model estimates. 

The methodologies for OI implementation are described in section 4.2. These include the 

model-observation validation methods used, the equations to calculate CMAQ-derived 

AOD, and the OI equations. Furthermore, the averaging methods used for CMAQ and 

MODIS inputs to OI, and the four different observation and model error settings used by 

OI are described in detail.  

The results, presented in section 4.3 demonstrate an OI algorithm case study for 

May 2002. Detailed spatial inputs and outputs are presented as physical and mathematical 

evidence of OI’s performance. The influence of the error covariance matrices used by OI 

for both the model and the observations are included in the current work giving an 

understanding of the effects of the four settings used for each averaging method. The 

annual evaluation of OI for the six regions in the continuous U.S. are described in 

addition to two sensitivity tests performed to evaluate the effects of both AERONET 

AOD and equation 4.7 on the posterior model estimates. Cross validation is performed to 
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validate the effectiveness of the data assimilation methods used in the current work, 

which is also described in section 4.3.10. 

This chapter discusses OI performance over the western U.S. since data 

assimilation was less effective in the western parts of the U.S. than the eastern parts of 

the United States. Alternative input datasets that can be used by OI and possibly provide 

better data assimilation results are discussed and presented. An inter-comparison between 

the current work and previous work provides a good model AOD comparison between 

the current study and previous OI studies in Asia.  

4.2 Methodology 

4.2.1 Method overview 

A graphical introduction to the methods, Figure 4.1 depicts the information flow 

to combine CMAQ AOD (τcmaq) estimates with aerosol optical depth data from sun 

photometers and satellite retrievals, producing posterior AOD values. τcmaq was calculated 

based on hourly CMAQ concentrations and mass extinction coefficients for each 

individual species (section 4.2).  Posterior ( 2.5MP  ) and prior PM2.5 (
cmaq
2.5PM ) estimates 

were quantitatively compared with surface measurements from both the Interagency 

Monitoring of Protected Visual Environments (IMPROVE) [MALM et al., 1994] and 

EPA Speciation Trends Network (STN) [USEPA, 2006] networks. MODIS AOD (τmodis) 

was evaluated with ground-based AOD measurements from (τanet) (section 4.16). τmodis 

and τanet data were regridded to the CMAQ domain, and τanet replaced τmodis where 

available. 

2.5MP  was calculated as the product of the cmaq
2.5PM fields and a scaling factor (the 

ratio of posterior to prior AOD values in OI). Different error settings, model error 

correlation length scales, averaging procedures, and choices for application of scaling 

factors were used to develop multiple realizations of 2.5MP   via OI. Points in the 

algorithm with multiple choices of settings or sub-algorithms are denoted in Figure 4.1 as 
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A, B and C. The multiple realizations are then evaluated against surface PM2.5 monitoring 

data to identify promising combinations of choices. 

 

Figure 4.1 Algorithmic flow of chapter 4, (A), (B) and (C) show points where variable 
settings or sub-algorithms are chosen. See text for details.  

4.2.2 Observation data 

The same observations referred to in chapter 3 were used for evaluation and is 

shown Figure 3.2. τmodis [Levy et al., 2009] data were reprojected to the 36 km spatial 

resolution Lambert Conformal Conic CMAQ model grid using the Remote Sensing 

Information Gateway (RSIG) [Details at http://badger.epa.gov/rsig/]. RSIG averaged 

multiple data points for each grid cell. RSIG’s AOD product is a composite of AOD from 

http://badger.epa.gov/rsig/
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MODIS Terra (north to south orbital transect at about 10:30 AM local time) and MODIS 

Aqua (south to north orbital transect about 1:30 PM local time). AOD retrievals (based 

on V5.2) were calculated at 0.55 µm and originally processed using MODIS data at 10 

km [Levy et al., 2009]. τmodis is only available in a subset of observation pixels due to 

cloud contamination, reflective surfaces, and other factors.  

4.2.3 OI implementation  

Following the approach of Adhikary et al. [2008], AOD measurements from 

AERONET [Holben et al., 1998] were used in the assimilation. Separately from the OI 

algorithm, τmodis was evaluated for bias using AERONET; this is common practice since 

the sun photometer AOD are not sensitive to surface reflectance [Remer et al., 2005]. 

AERONET level 1.5 was used if available; level 1.0 was used if not. Level 1.5 data is 

cloud screened data, but level 1.0 is not. Future work and manuscripts will exclude both 

level 1.0 and 1.5 datasets and use level 2.0 data which is quality assured data. For 2002, 

data from up to 39 AERONET sites in the domain were available (Figure 3.2) and τanet 

values replaced the τmodis values in the respective model grid cells. If both existed at the 

same hour in the same grid cell, τanet was used instead of τmodis. The final observational 

input to OI (referred to as τo) is a monthly mean AOD for each grid cell, and grid cells 

with AERONET stations may have a monthly mean of a combination of τmodis and τanet 

data, although a large majority of τanet values is common in such cells. On average, each 

CMAQ grid cell had 16 available AOD retrievals per month out of a possible number of 

retrievals of about 60. On average all regions had more retrievals in summer and fall 

relative to winter and spring. During 2002, 36 AERONET stations reported at least some 

valid AOD measurements which are used in this work. Level 1.5 τanet data is recorded at 

15-minute intervals during cloud-free daylight hours. On average, a grid cell with an 

AERONET station had 124 hours (out of a possible 730) of valid AOD retrievals per 

month. 
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To facilitate comparison of observed PM2.5 and modeled PM2.5, kriging was used 

to create gridded PM2.5 values from surface observations. Kriging was performed with 

monthly average surface PM2.5 values from the AQS, IMPROVE, and STN networks. 

Kriging was performed with GSLIB using month-specific Guassian semivarigrams 

[Deutsch and Journel, 1998]. Sill, nugget, and range parameters were optimized on a 

monthly basis (by nonlinear least squares) to match the experimental semivariogram. 

4.2.4 CMAQ-Derived aerosol optical depth (τcmaq) 

Aerosol optical depth has been calculated from CMAQ concentrations in various 

studies [USEPA, 2005; Malm et al., 1994, 2007]. In this study, AOD was calculated using 

an empirical equation based on IMPROVE nephelometry, with the Raleigh scattering 

portion excluded [USEPA, 2005]. 

))(()())(()([ ANO3JANO3I*1.29*RHf*bASOJASOI*1.375*RHf*bb 11ext 

 

SSF*RHf*bPMCOARS*bPM*bPM*bPM*b s65OTH4EC3ORG2 TOT
)(  

])( SSC*RHf*b s6   (4.1)        (4.1)     

where extb  (Mm
-1

) is the total extinction coefficient.  

Table 4.1 shows the description and dry mass extinction efficiency values for 

equation (4.1), which are adapted from White [1990] and Malm et al. [1994]. AOD is 

summed over the vertical layers to calculate total column thickness: 





1..nk

kextcmaq Zbτ
k

 

(4.2) 

where n is the number of layers, and zk is the layer height of layer k. Malm et al. [1994] 

defined )(RHf as bext(RH)/bext,dry where bext(RH) is the extinction coefficient as a 

function of relative humidity and bext,dry is the extinction coefficient at dry conditions. 

The same )(RHf values were used for ammonium sulfate and ammonium nitrate, taken 
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from the IMPROVE website [Debell et al., 2006]. Sea salt )(RHf s  of Pitchford et al. 

[2007] were used.   

Table 4.1 Values for constants for AOD calculation in equation 4.1 [EPA, 2005]   

CMAQ species 
code 

Species description Mode 
Dry mass extinction 
efficiency value (b)       

(m
2
 g

-1
) 

ASO4I, ASO4J Sulfate Fine
*
 3 

ANO3I, ANO3J Nitrate Fine
*
 3 

PM_ORG_TOT Organic Carbon Fine
*
 4 

PM_EC Elemental Carbon Fine
*
 10 

PM_OTH Unspeciated aerosols Fine 1 

PMCOARS Coarse particles Coarse 0.6 

SSF, SSC Sea Salt Fine, Coarse 1.7 
*
Computed by adding both Aitken and accumulation modes 

 

4.2.5 Satellite data assimilation via optimal interpolation 

The OI method used in this study was adapted from earlier studies over Asia 

[Collins et al., 2001; Adhikary et al., 2008; Chung et al., 2010]. In the governing equation  

)HτK(τττ cmaqocmaq 
 

(4.3) 

τ   is the posterior AOD. H transforms the model data into the same space and 

variable as the observed data. In this work, H was the identity matrix because oτ  were 

mapped onto the CMAQ grid prior to the OI subroutine. K is the Kalman gain matrix, 

which combines the error covariance matrices for both the model and observation: 

1)(  OHBHBHK TT

 

(4.4) 

where B and O are the error covariance matrices for the background and the observation 

fields respectively.  
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of  and cmaqf  are the fractional errors for the observation and the model, 

respectively. The parameters oε  and cmaqε  are the fixed errors in the observation and the 

model, respectively. The difference between the column indices of two cells is dx, while 

the difference between the row indices of two cells is dy. lxy is the horizontal correlation 

length scale for errors in the modeled AOD, which varies from one to five grid cells. OI 

is performed on a moving window technique that only involves 5x5 grid cells centered on 

the grid cell of interest. 

If the posterior AOD in the grid cell, i ( )(iτ  ) fell outside the range of the τcmaq 

and τo, then equation 4.7 was used instead, where the posterior AOD is calculated as the 

product of the model prior AOD with the model error covariance fraction.   

))()((
)()(

)(
)()( iτiτ

ii,Oii,B

ii,B
iτiτ cmaqocmaq 


                                              (4.7) 

4.2.6 Satellite optimal interpolation methods and settings 

The assimilation was conducted using monthly averages of τo. In other words, the 

inputs and outputs to OI (equation 4.3) represent monthly averages. Monthly averaging is 

supported by Li et al. [2009] who studied different temporal averaging windows for 

regression of PM2.5 from τmodis and recommended monthly averaging prior to regression. 

Previous OI studies [Adhikary et al., 2008; Yu et al., 2008] have also used monthly 

temporal averages. 

Three OI approaches were tested (denoted as a through c in Table 4.2) which 

differed in the construction of monthly average τo and with the method of application of 

the OI scaling factor (i.e. the adjustment due to MODIS) to the model PM2.5 values to 

produce posterior PM2.5 values ( 2.5MP  ). In addition to multiple averaging approaches, the 
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parameters in equations 4.5 and 4.6 were varied over repeated calls to the OI algorithm to 

quantify sensitivity and establish best parameters. For each of the three approaches found 

in Table 4.2, four combinations of fractional and fixed error values (denoted 1-4 in Table 

4.3) were used, generating 12 realizations of 2.5MP  . We also varied the horizontal 

correlation length scale for model errors by testing lxy values from 1-5 (equivalent to 36-

150 km). The 60 realizations were evaluated by comparison to the surface monitoring 

data to identify the most suitable combinations (quantified by a fractional error score, 

defined below). 

The three approaches in Table 4.2 have either different temporal averaging 

formula, or different methods of application of the scaling factors. Method a uses all τcmaq 

in the monthly average for each grid cell, even though there are many more values in the 

model than the observations since the observations occur during only 1 or 2 hours per 

day, and valid retrievals are not achieved every day. Method b averages hourly τcmaq 

values only if they are paired with valid τo values. 2.5MP   is the product of prior cmaq
2.5PM  

by cmaq/ττ   (referred to as scaling factors in this paper). In methods a and b, scaling 

factors are applied equally to all hours in the month. In method c, scaling factors are 

applied only during and near hours with an AOD observation. The weighting of the 

scaling factor is adjusted using a Gaussian function, with full application of the scaling 

factor during the hour with the observation, and decreasing to a weight of 5% over a time 

window of ±12 hours. Time windows of ±8 and ±16 hours were also tested but the 

overall results were found to be insensitive to this selection and only the ±12 hour setting 

is analyzed herein.   

The range of model errors in Table 4.3 was calculated by using representative 

model errors relative to surface PM2.5 observations. Model error of 0.5 to 1 g m
-3

 at 

conditions of 5 g m
-3

 PM2.5 corresponds to the fixed error term. Fraction error terms 

were consistent with total CMAQ errors of about ±8 g m
-3

 at PM2.5 levels of 20 g m
-3

. 

Absolute errors are dominant at clean conditions, while fractional error is increasing 
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important as PM2.5 increases. The MODIS errors of Adhikary et al. [2008] and Collins et 

al. [2001] were adopted.  

Table 4.2 Methods used for Optimal Interpolation  

Method 

 

Construction of 
MODIS Monthly 
Average AOD for 

OI Algorithm 

Construction of CMAQ 
Monthly Average AOD 

for OI Algorithm 

Use of scaling factor cmaq/ττ   

 

a All available data in 
grid cell i,j 

All τcmaq in grid cell i,j 
cmaq
2.5cmaq2.5 PM/ττMP   

b Only τcmaq with paired 
observed values 

c Same as Method b 

*cmaq
2.52.5 PMMP   

((   
 

  
   )  

  

     
 
 

  
   ) 

note* 
note*.  t (hours) is the time difference between the hour of the PM2.5 estimate and the nearest (in time) 

overpass time, and 
2  is set to 4.9 to confine the 95% influence of the scaling factor to within ±12 hours respectively.   

Table 4.3 Optimal interpolation parameters (observation and model fractional error and 
absolute values) 

Setting fo, eo fm, em 

1 0.2, 0.04 0.35, 0.1 

2 0.2, 0.04 0.45, 0.05 

3 0.4, 0.04 0.35, 0.1 

4 0.4, 0.04 0.45, 0.05 

 

4.2.7 MODIS retrieval at a finer spatial resolution 

MODIS data was provided at 2km retrieval [Kumar et al., 2011], this would be 

different from the 10km retrieval available from the NASA website by default. The 2km 
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data was regridded to the 36km CMAQ domain by averaging all the available data points 

within one grid cell.  OI was conducted using the full set of methods and settings for all 

regions on an annual basis.    

4.3 Results 

4.3.1 OI algorithm case study for May 2002 

Figure 4.2 maps the AOD values of OI inputs (4.2a, 4.2c) and OI output (4.2e) for 

May 2002.  Panels on the right are frequency distributions of the AODs from the spatial 

plots.  Mean values for each region are listed in the inset table. Figs. 4.2a and 4.2b show 

τo, with mean of 0.22. These are higher than the counterparts τcmaq (Figs. 4.2c and 4.2d). 

The difference is most prominent in the west over mountain and desert regions. As 

expected, τcmaq was higher in more polluted locations such as the Northeast, Los Angeles, 

and the San Joaquin Valley. τo has considerable fine-scale variability while τcmaq is 

smoother, since the observation has significant regions of missing data. 

The output of the OI algorithm (τ  ) is shown in Figure 4.2e, with a distribution 

shown in Figure 4.2f. This particular realization uses method ‘a’ (Table 4.2), error 

settings ‘2’ (Table 4.3), and a model error correlation length parameter (lxly) of ‘1’; 

therefore, it is a 2a(1) realization. Figure 4.2e shows that the mean τ   (0.16) is higher 

than τcmaq. Qualitatively, τ   combines spatial features of τcmaq and the τo. Also, the 

distribution of τ   has started to take the shape of the observational histogram.    

Figure 4.3 shows the logarithmic scaling factors as well as cmaq
2.5PM  and 2.5MP  for 

the May 2002 example. The scaling factors range from 0.3 to 16.  High scaling factors 

can be caused by negative model biases for cmaq
2.5PM  (e.g. underprediction), negative 

biases in the optical property calculation for τcmaq, or by positive biases in τo. Many of the 

areas with high scaling factors in the example from Figure 4.3 have high surface 

reflectance and dust. The model consistently had negative bias for PM2.5 along  
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Figure 4.2 Example of the OI algorithm inputs (May 2002). (a) map and (b) histogram of 

monthly mean τmodis; (c) map and (d) histogram of monthly mean cmaqτ ; (e) 

map and (f) histogram of τ   calculated using averaging method 2, error 

setting a, and lxly 1.   
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Figure 4.3 OI output (a) Log10 of CMAQ AOD scaling factors, (b)      
    

, (c)      
  

for May 2002 [settings used. method-2a, lxy1] 
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the U.S.-Mexico border in the southwestern U.S. (discussed in section 4.11). Scaling 

factors lower than one are also common, presumably resulting from positive biases in 

modeled aerosols, relative humidity, or potentially from negative bias in τo. Figures 4.3b 

and 4.3c map cmaq
2.5PM  and 2.5MP  average concentrations for May 2002. It is clear that 

2.5MP  is higher than cmaq
2.5PM  and the high cmaq

2.5PM  corresponds to locations with high τo 

(Figure 4.2a). Mean PM2.5 concentrations in each region increased since on average, τo 

exceeds τcmaq. The Mountain region has the largest increase in mean concentration, by a 

factor of seven, followed by the Pacific region with a factor of about four.  Across the 

entire domain, the mean 2.5MP   (5.6 µg m
-3

) was significantly higher than the mean 

cmaq
2.5PM  (2.2 µg m

-3
).  

4.3.2 Influence of input data selection and preprocessing OI 

Two major choices relative to input data selection are made in the algorithm.  The 

first is whether to average CMAQ across all hours of the month (method a in Table 4.2), 

or to selectively average CMAQ during hours with AOD retrievals (methods b and c of 

Table 4.2). One of the distinctive features of the current work is the testing of methods b 

and c.  Previous similar studies [Collins et al., 2001; Adhikary et al., 2008; Chung et al., 

2010] have only used method a. The second choice is whether to include τanet by 

replacement of τmodis in pixels containing AERONET sites. A similar assessment of the 

impact of τanet by replacement was performed by Adhikary et al. [2008]. In the current 

work, the impact of including τanet was negligible on domain-wide performance statistics 

but scaling factors in the immediate neighborhoods of the AERONET sites were 

influenced. 

Figure 4.4 shows the influence of method a (Figs. 4.4a and 4.4b) and b (Figs. 4.4c 

and 4.4d) on τcmaq in May 2002 as an example. The difference between τcmaq in method a 

and τcmaq in method b is shown in Figure 4.4e. Positive values indicate that τcmaq using 

method a are higher than using method b. 



www.manaraa.com

46 
 

 

The pattern shown in Figure 4.4 is that τcmaq values are higher when averaging 

across all hours. This is likely due to the diurnal pattern of temperature and relative 

humidity in CMAQ, which causes higher AOD values at night and then increases τcmaq in 

method a but not in method b. This pattern is consistent throughout all month and all 

regions. Since τo is, for the most part, higher than τcmaq regardless of the averaging 

scheme, method a results in lower scaling factors than method b, because the method b 

τcmaq are lower, and thus require greater adjustment to approach the typically higher τo 

values. For example, in the grid cell containing Bondville, IL, the mean τcmaq value in 

method a is 60% higher than the value in method b; consequently, the scaling factors are 

much lower than those from method a.  

 

4.3.3 Influence of the error covariance matrix for the model 

(B) and observation (O) on OI 

The error covariance terms that quantify the errors in the model and observation 

values, as well as the spatial covariance in model errors, have substantial influence on τ  . 

Accordingly, 2.5MP   depends on the method and error settings used for OI. The averaging 

method (Table 4.2) and error settings (Table 4.3) influence the amount of adjustment by 

OI. The variation is large enough that in some months and regions, the different error 

settings can lead to different signs in the cmaq
2.5PM  mean fractional bias (i.e. 

underprediction versus overprediction). 

The impact of the error settings is evident from changes between τcmaq and τ   for 

May 2002.  As shown above, in May 2002,  τo is significantly higher than the τcmaq; 

therefore, a larger increase in CMAQ AOD is indicative of the OI algorithm placing a 

higher weight on the observations. The increases in CMAQ AOD relative to the prior are 

60%, 56%, 56%, and 50%, for settings 1a(1), 2a(1), 3a(1), and 4a(1). Therefore, error 

setting 1, with lower fractional errors on the observations, and higher absolute error on 



www.manaraa.com

47 
 

 

the model AOD, weights the observations most heavily. Setting 4, with higher fraction 

error on the observations, and lower absolute error on the τcmaq, weights the model most 

heavily.  Settings 2 and 3 are intermediate. 

For both urban and rural locations, setting 4 was selected as the one with the 

lowest FES most frequently (37% of month/region combinations). For comparison, 26%, 

7%, and 9% of month/region pairs had settings 1, 2, or 3, respectively (the remaining 

37% showed no improvement under any setting). Looking at combinations of settings 

and averaging methods, the 4c combination has the smallest influence of the 

observations, produced the lowest FES values fairly frequently. The 4c combinations 

were particularly prevalent in the Pacific and Mountain areas where we have the least 

success in OI and the most evidence for bias in τo. 

The lxly setting influences both posterior spatial patterns and error covariance, but 

the effects are somewhat complicated. The first effect is the spatial smoothing of τ   that 

is expected with higher values of lxly. The second effect is that increasing lxly increases 

the error covariance between model grid cells that are near to one another, and this 

increases the effective weight of the observations. Even in cases when the total error on 

the observation (foτo+εo) is comparable to the model error (fcmaqτcmaq+εcmaq), the 

observations are weighted more heavily than the model due to the assumption of 

covariance in the model errors and independence in the observation errors. These basic 

effects of increasing lxly are further complicated by the algorithm option (equation 4.7) 

where τ   lying outside of the range of τcmaq and τo are coerced. 
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Figure 4.4 τcmaq for May 2002.  (a) map and (b) histogram of τcmaq averaging all 
hours; (c) map and (d) histogram averaging of hours with an observation 
AOD pair only; and (e) difference of panels a and c.  Positive values indicate 
that τcmaq from the all hours averaging are higher than those during hours 
with paired observation data.  Mean values of each geographical region are 
shown in the inset table in each figure. 
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Equation 4.7 is invoked in 18 percent of grid cells at lxly 1, and this increases to 

45-50 percent for lxly of 2 through lxly of 5. Equation 4.7 can be invoked in two 

situations. The first situation is when the weights being applied to the observation 

measurement difference sum to greater than one, due to numerical issues in calculating

1T OHBH  )( . The second potential condition where equation 4.7 is invoked is when 

either the observation or the model are weighted heavily, and then a smooth surface 

through the heavily weighted contribution will have values outside of the original range 

established by τcmaq and τo. 

Comparisons between τ maps calculated using the same settings and different 

lxly error covariance length scales show that from lxly of 1 to 2, some smoothing is 

observed and the average weighting of the observations increases. From lxly 2 to 5, there 

is minimal change. The reasons for this are (i) that the algorithm uses a 5x5 window to 

calculate the OI posterior, and this has a limited ability to do further spatial smoothing; 

and (ii) the alternate equation for calculating the posterior (equation 4.7) is increasingly 

applied, and this equation tends to not produce a smoothed surface. 

4.3.4 Options for calculating the      
  

All methods use the OI-derived scaling factors on a grid cell by grid cell basis as 

multipliers to create the posterior modeled fine aerosol concentrations. Methods a and b 

apply the scaling factors uniformly to all hours. Method c (Table 4.2) applies the scaling 

factors at their full magnitudes only at the hour of the AOD observation as explained in 

the Methods section and Table 4.2.  

Figure 4.5 shows the difference between method b (Figure 4.5a) and method c 

(Figure 4.5b). The figures show that 2.5MP   values from method b have more influence 

(on average) from τo than those from method c. Method c tended to yield posterior values 

more heavily weighted to the model. The reason for this is that method c only corrects 
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with scaling factor’s full magnitude at the time of the satellite overpass, so the posterior 

monthly average changes are less than with method b. 

Figure 4.6 shows a time series of the PM2.5 surface measurements (observation) at 

a location for a specific IMPROVE site in the Rocky Mountain National Park for May 

2002. Three model-based concentration time series are also shown: cmaq
2.5PM , 2.5MP   from 

method 1b(1), and 2.5MP   from 1c(1)). The scaling factor for this combination of month, 

grid cell, and methods was 11.9 for both 1b(1) and 1c(1). As an example to show the 

difference between both methods in Figure 4.6, on May 17
th

 2002 there was a MODIS 

AOD recorded at 11 AM local time. Method c had the largest adjustment only at the 

specific hour of the observation, and a falloff in the applied scaling factors for hours 

before and after. Using method c, the average PM2.5 during this time period shifted from 

1.56 to 8.24 µg m
-3

. Using method b, the correction was applied to all hours, and the 

resulting mean PM2.5 concentrations changed from 1.56 to 18.5 µg m
-3

. 

All three methods (a, b and c) increased PM2.5 concentrations in cases where τo 

was higher than τcmaq; often, this was the desirable direction of adjustment since negative 

bias was common in CMAQ. For example in May in the South Atlantic region prior 

mean bias was -4.5 µg m
-3

 ( cmaq
2.5PM  - observation), and when using error settings 1, 

averaging method a, and lxly 1 [i.e. realization 1a(1)], the 2.5MP   bias was 0.01 µg m
-3

. 

Alternately, 1b(1) and 1c(1) gave model biases of 1.9 and -2.5 µg m
-3

, respectively.  This 

can be understood by the fact that original model has negative bias in this month and 

region and the τo (mean of 0.24 in the region) are higher than the τcmaq. τcmaq had a spatial 

mean of 0.081 using method a, and 0.062 when restricted to hours paired with 

observations (method b).  Method c was responsible for the smallest amount of change in 

the model because the scaling factors derived from OI are applied selectively (only 

during and near hours of satellite observations). Method a was responsible for the next 

largest adjustment, while method b led to the largest adjustment in this case. Method a 
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produced a mean scaling factor of 1.02 (standard deviation 0.3) compared to 2.1 

(standard deviation 0.65) for method b.  

 

Figure 4.5 Posterior PM2.5 (     
 ) under two different ways of applying the OI scaling 

factors.  Approach b is shown with settings (1b(1)) in panel a, while approach 

c is shown with settings (1c(1)) in panel b. 

 

Figure 4.6 Observations (IMPROVE), model prior, model posterior (1b(1)), and model 
posterior (1c(1)), at the IMPROVE site in the Rocky Mountain National Park 
in May 2002. 
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4.3.5 Application of OI to all months and regions of 2002 

The previously demonstrated OI algorithm was comprehensively applied to all 

months and regions for the year 2002. For each month, all possible combinations of 

methods (Table 4.2), error settings (Table 4.3), and error covariance distances (lxly 

settings) were applied, for a total number of 360 combinations per month. The 360 

possible OI realizations for each month were evaluated by the metric fractional error 

score (FES). As described in the methods section, these realizations were searched for OI 

settings that would lead to the greatest degree of improvement in the FES. 

Two important factors about the search for optimal settings should be noted. First, 

realizations that led to a degradation in FES relative to the prior model result had their 

2.5MP   values replaced with the cmaq
2.5PM  result. In other words, where a particular OI 

setting is listed as achieving the best mean FES when averaged across multiple months or 

regions, it is important to note that instances (i.e., particular months and regions) with 

degradation in FES upon OI had their cmaq
2.5PM  concentrations included in the final 

average and that OI results from those months were not used. Second, the evaluation of 

OI realizations was done separately versus IMPROVE and STN measurements (i.e. 

evaluation was done for rural and urban sites separately). 

Optimal interpolation improved multiple months for all regions, but the eastern 

regions experienced improvement more frequently than the western regions. Table 4.4 

lists settings that achieved the lowest absolute value of the FES for each month/region 

combination. A horizontal line (-) indicates that no setting achieved an improvement 

relative to the prior in the month and region in question.  Although the Mountain region 

showed improvement from OI, method c (which limits the influence of the observations) 

was selected in this region more frequently than in other regions. The methods that most 

frequently had the superior FES were methods a and c. Method a achieved the lowest 

FES in 47 specific regions and months, versus 15 and 27, respectively, for methods b and 

c. 55 specific regions and months did not show any improvement.  Method b (averaging 

a b 
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model AOD during only overpass hours and applying scaling factors to all hours) often 

yielded high scaling factors and 2.5MP   values that were too high. 

Error setting 4 (Table 4.3) was selected most frequently in both networks, where 

it showed up 52 times out of 89 totals (excluding 55 no improvement cases). lxly setting 

‘1’ was the most frequently used setting in both networks, where it led to the lowest FES 

42 times out of 89 totals (excluding 55 no improvement cases). One distinctive feature is 

that both networks had improvement in the summer (June-Aug) at all regions. This is 

likely explained by the widespread negative bias in cmaq
2.5PM  during summer, so the OI 

(which often yielded scaling factors > 1) was adjusting cmaq
2.5PM  in the correct direction 

most consistently in summer. τo may also be most reliable in summer due to limited snow 

cover and presence of dark vegetation. 

Figure 4.7 and Figure 4.8 plot MFB versus MFE “soccer plots” [Morris et al., 

2005], for IMPROVE and STN networks, respectively. The plots represent monthly 

(from 1-9 plus O, N and D for Oct, Nov, and Dec, respectively) values for six regions in 

2002. The rectangular areas in the soccer plot correspond to performance categories, with 

excellent, good, average, and problematic areas radiating out from the origin. Arrow 

origins correspond to the performance of the prior, and arrow termini correspond to the 

posterior performance. Improvements in bias were larger than error improvement. Two 

types of behavior can be identified in the figures. The first is where (during all months 

with arrows) the prior model exhibited negative bias, and the satellite AOD caused an 

upward adjustment in concentration, often changing the bias from negative to positive. 

These are shown as arrows which move from left to right, and can be seen in Fig. 4.7a, b, 

c, and Fig. 4.8a, b and d. During these months and regions, selection of OI settings was 

often critical to preventing substantial overcorrection. In Figs. 4.7a and 11c there are 

points with substantial positive model bias, but they were not adjusted in the correct 

direction by OI. 
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Table 4.4 Settings that achieve the lowest absolute value of Fractional Error Score (FES) 
relative to surface measurements of (a) IMPROVE network and (b) STN for 
year 2002

1
. 

(a) 

IMPROVE 

Midwest Mountain Northeast Pacific 
South 

Atlantic 
South 

Central 

January - - 3a(5) - 1a(2) - 

February - - 4a(1) - 1a(5) - 

March - - 4a(5) - 1a(4) 4a(1) 

April - 2c(3) - - 4a(1) 2a(1) 

May 3a(4) 4c(1) 2a(4) - 4b(1) 3a(1) 

June 4a(1) 2a(2) 4a(1) 4c(1) 3b(2) 2b(2) 

July 4b(1) 4a(1) 4a(1) 4c(1) 1b(2) 3a(1) 

August 3a(2) 2a(3) 3b(4) 2c(5) 1b(2) 3a(1) 

September - 2c(2) 1b(3) - 1b(5) 4a(3) 

October - - 1a(5) - 3b(5) 4c(1) 

November - - 4a(2) - 4c(5) 4a(3) 

December - - 4a(5) - 4c(2) - 

 (b) 

STN 

Midwest Mountain Northeast Pacific 
South 

Atlantic 
South 

Central 

January - - 2a(5) 1a(2) 1a(5) - 

February - - - 4a(5) 4a(1) - 

March - - 4c(1) - 1c(5) - 

April - - - 4a(1) 3a(2) 4b(1) 

May - - 4a(5) - 4a(1) 4a(1) 

June 4c(1) 4c(1) 4c(1) 4c(1) 4a(1) 4b(1) 

July 4a(1) 4c(1) 4a(1) 4c(1) 4a(5) 4b(5) 

August 4c(5) 4c(1) 4c(1) 4c(1) 4a(1) 4a(1) 

September - - - - 3a(1) 4b(5) 

October 4a(5) - - 3c(3) 1b(3) 2c(5) 

November 4a(3) 4c(1) - 4a(5) 1c(1) - 

December - 4c(1) - 1a(2) 3c(4) - 

1
Xn(Y) refers to error setting X (Table 4.3), averaging method n (Table 4.2) and lxly 

parameter of Y. So for example if X was setting 2 in Table 4.3, n was a in Table 4.2, and 
Y was 1, then the final combination will be 2a(1). ‘-‘ indicates that the prior FES is less 
than the FES by any OI setting. 
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This is consistent with persistent positive bias in τo. The second type of behavior 

was when the prior model has positive bias in some periods and negative in others, and τo 

provided (at least during several months) adjustments in the correct direction. This was 

less frequent and can be seen in Figs. 4.7e, 4.8c, and 4.8f. We consider the second type of 

behavior as a stronger indicator of valuable information content in the satellite, as the 

first type of behavior is consistent with a negative prior model and unbiased or a 

positively biased observation. A third type of behavior (a consistent positive bias in the 

model) with consistent reduction in concentration by the observations was not observed. 

In addition to examining performance using the settings selected individually for 

each region and month, settings were optimized under constraints such as requiring a 

single monthly setting for all regions, a single regional setting for all months, etc. The 

constraints used are listed in Table 4.5, and these apply to the groupings found in Figure 

4.9. Realizations that lead to a degradation in FES relative to the prior model result had 

their 2.5MP   values replaced with the prior model result. Figure 4.9 graphs fractional error 

scores calculated for IMPROVE and STN averaged across multiple regions and months. 

Even and odd months were treated separately to allow intercomparison and cross-

validation. Odd months of 2002 are shown 4.9a while 4.9b graphs even months. The 

optimization schemes used are listed in the figure as explained in the caption. As a means 

of cross validation, settings trained on odd months were applied to even months (January 

settings on February, March settings on April, etc.). And even month settings were 

applied to odd months (February on January, April on March, etc.). Figures 4.9c and 4.9d 

show those FES scores averaged across all regions and across 6 months. Figures 4.9c and 

4.9d are discussed further below. 
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Figure 4.7 Monthly (1-9 plus O, N, and D for Oct, Nov, and Dec, respectively) prior and 
posterior Fractional Bias versus Fractional Error for 2002 for IMPROVE 
sites.  The four (from excellent to problematic) performance categories 
described in the methods section are shown visually by the rectangular zones. 
The beginning and ending of the arrows represents the prior and posterior 
values, the arrows are only shown for months that show improvements.   
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Figure 4.8 Monthly (1-9 plus O, N, and D for Oct, Nov, and Dec, respectively) prior and 
posterior Fractional Bias versus Fractional Error for 2002 for STN sites.  The 
four (from excellent to problematic) performance categories described in the 
methods section are shown visually by the rectangular zones. The beginning 
and ending of the arrows represents the prior and posterior values, the arrows 
are only shown for months that show improvements.     
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Table 4.5 Categories for constraints on OI settings and methods (used in Figure 4.9) 

Column Description 

1 Prior model (base case) no assimilation 

2 Customized setting/method for each month and region as shown in Table 4.4. 

3 One setting/method for each month, applied across entire domain. 

4 One setting/ method for each region, applied across all months. 

5 One setting/method applied to all regions and months. 

 

Figure 4.9a and 4.9b show average improvements in error over the prior model 

from 0.99 to 0.89 (at STN sites) and from 1.2 to 0.97 (at IMPROVE sites). Since 

category 2 (with individual method/setting combinations for each month and region) had 

the highest degree of freedom for selection of settings, it naturally had the greatest  

improvement. The improvement stayed similar in magnitude for the more restrictive 

categories (3-5), with category 5 involving a single method/setting for the entire domain. 

Allowing variation in method/setting selection across time versus across region was very 

similar. With a single method/setting for 6 months and all regions, improvements over 

the prior was from 0.99 to 0.91 and from 1.2 to 1.00, respectively, for STN and 

IMPROVE monitoring locations.    

Figures 4.9c and 4.9d show the result of a simple test of robustness of settings. 

Settings trained on odd months were applied to even months (January settings on 

February, March settings on April, etc.). And even month settings were applied to odd 

months (February on January, April on March, etc.). Figures 4.9c and 4.9d show those 

FES scores averaged across all regions and across 6 months. The graphs show that when 

applying the month’s settings to opposite months the FES was similar to the 

improvement generated from using the settings optimized specifically for the month in 

question. Bar graphs in 13c and 13d use the prior in any month with degradation in the 

FES. The asterisks use a less forgiving procedure, where the selection of whether to use 
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the prior or the assimilation result is retained from the original “training” months (e.g. if 

the settings optimized for January in a specific region led to no improvement in FES in 

January, then the prior was used for February in the application of odd settings to even 

months). Comparison of the bar and asterisk positions show that settings are robust, but 

only under restriction that months with a degradation are replaced with the prior. 

 

Figure 4.9 CONUS averaged fractional error score (y axis) derived from best OI settings 
for different constraints on the number of settings allowed (x axis categories). 
Left-most category is for the prior model with no OI. Categories 2-5 are 
described in Table 4.5.  Panels a and b show results for odd and even months, 
respectively.  Panels c and d provide a qualitative cross validation by 
applying settings optimized for even months to odd months (panel c) and vice 
versa (panel d).  Lists above each bar are the specific settings used. The 
asterisks use a less forgiving procedure, where the selection of whether to use 
the prior or the assimilation result is retained from the original “training” 
months (e.g. if the settings optimized for January in a specific region led to 
no improvement in FES in January, then the prior was used for February in 
the application of odd settings to even months). 
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Figure 4.10 shows the result of OI applied to PM2.5 concentrations for a complete 

year. Figure 4.10a maps 2002 annual average kriged surface observations from the AQS 

and IMPROVE networks. Figures 4.10b and Figure 4.10c map the 2002 annual average 

cmaq
2.5PM  and 2.5MP  , respectively. The posterior was calculated by applying OI setting 

4a(1) to odd months and 4c(1) to even months.  

Bias reduction can be evaluated from PM2.5 bias maps of cmaq
2.5PM  (Figure 4.11a) 

and 2.5MP   (Figure 4.11b). Bias maps are calculated as the model result minus a kriged 

PM2.5 observation surface from Figure 4.10a.  The plots show modest improvement in 

multiple locations (shifts from positive bias (red) or negative bias (blue) toward unbiased 

(white) colors. Areas with good performance include West Texas and Salt Lake City, the 

Ohio-Indiana border, around Atlanta, and eastern Pennsylvania. For example, areas along 

the Texas-Mexico border (Figure 4.10b) showed considerable negative bias in the 

forward model. Five sites were evaluated along the border with Mexico, one rural site 

(Big Bend National Park) and four urban sites located in El Paso and Corpus Christi, 

where OI reduced negative bias from 2.51-12.18 µg m
-3

 to a 0.63-7.97 µg m
-3

. 

Substantial areas where model skill appears not to improve exist as well.  

While Figure 4.11 shows the improvement qualitatively, the quantitative 

performance metrics are more reliably calculated using the original STN and IMPROVE 

PM2.5 and the following were calculated using all daily paired measurements during 

2002:  RMSE, coefficient of determination, bias, FB, and FE were calculated. Four sets 

of statistics were calculated: cmaq
2.5PM  vs. STN observations, cmaq

2.5PM  vs. IMPROVE 

observations, 2.5MP   (with settings optimized for STN) vs. STN observations, and 2.5MP   

(with settings optimized for IMPROVE) vs. IMPROVE observations. For STN, the prior 

metrics were RMSE of 5.34 µg m
-3

, coefficient of determination 0.48, bias of -0.83 µg m
-

3
, FB -0.11, and FE 0.35. The OI posterior metrics were 5.25, 0.65, 1.12, 0.024, and 0.29, 

respectively. 
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Figure 4.10 2002 annual average cmaq
2.5PM  plots.  (a) AQS and IMPROVE PM2.5 values 

kriged to represent a combined measured PM2.5 surface; (b) cmaq
2.5PM ; (c) 

2.5MP  based on 4a(1) for odd months and 4c(1) for even months.   
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For IMPROVE, the prior metrics were RMSE of 4.37 µg m
-3

, coefficient of 

determination 0.55, bias of -0.86 µg m
-3

, FB -0.21, and FE 0.52. The OI posterior metrics 

were 5.23, 0.63, 1.36, 0.09, and 0.43, respectively. Figure 4.11c shows the difference 

between 2.5MP   and cmaq
2.5PM  (the difference between Figure 4.11b and Figure 4.11a), and 

OI tends to increase PM2.5 in the western U.S. and decrease it in the eastern U.S. 

Table 4.6 shows another summary of the overall improvement from the OI 

techniques of this work. Classifications are based on the zones of the soccer plots 

(Figures 4.7 and 4.8) as proposed in Morris et al. [2005]. Improvements are most 

significant in summer.  The lack of any settings that lead to OI improvement for the 

Pacific region (IMPROVE) is also notable. 

4.3.6 Variance evaluation for the month of May 

The current work relies on comparison of observation and model means; it is also 

reasonable to look at the variance differences. Figure 4.12 shows the temporal variance 

and coefficient of temporal variance for the month of May. The coefficient of variance 

for the observed PM2.5 values (after averaging multiple monitors in a CMAQ grid cell) is 

shown in Figure 4.12a.  The temporal variance is plotted for the τcmaq (Fig. 4.12b) and τ   

(Fig. 4.12d) model AOD.  The temporal coefficient of variance is plotted for the  τcmaq 

(Fig. 4.12c) and τ   (Fig. 4.12e) model AOD. The coefficient of variance is the same for 

the  τcmaq  and τ   value, because the scaling factors are in both the nominator and 

denominator, which is constant for the whole month for each grid cell. The variance and 

the mean both show an increase between τcmaq and τ   values. The model AOD coefficient 

of variance is higher than the surface observations PM2.5 coefficient of variance for τcmaq 

and τ   values.  
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Figure 4.11 Annual average 2.5MP   bias plots (a) before OI ( cmaq
2.5PM  - kriged surface obs, 

Fig. 11b-11a); (b) after OI ( 2.5MP   - kriged surface obs, Fig. 11c-11a); and (c) 

the amount of change due to OI ( 2.5MP  - cmaq
2.5PM ). 
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Table 4.6 2.5MP   performance at IMPROVE and STN networks based on Morris et al.    

metrics
1
.  

 IMPROVE 

 Pacific Mountain Midwest South 
Central 

Northeast South 
Atlantic 

Winter P A G A P→A A→G 

Spring A A A→G A G A→G 

Summer A P → A A→G P→G A→G A→G 

Fall A A→G G A G G 

 STN 

 Pacific Mountain Midwest South Central Northeast South 
Atlantic 

Winter A→G A G G A G 

Spring A A G A E G 

Summer A→G A→G G A→G G A→G 

Fall A A G→E G G G 

E=Excellent G=Good A=Average P=Problematic 
1
Arrows indicate improvements. 

By definition, the coefficient of variance is the square root of the variance divided 

by the square root of the mean values, therefor the variance of AOD is different from the 

variance of PM2.5, but the coefficient of variance is the same since the PM2.5 to AOD 

conversion factor is applied to both the nominator and denominator. Spatial value of the 

variance and coefficient of variance for a grid cell was calculated as the mean value of a 

5x5 surrounding window. Figure 4.13 shows the spatial variance and coefficient of 

variance for the month of May. The spatial coefficient of variance for the observed PM2.5 

values (after averaging multiple monitors in a CMAQ grid cell) is shown in Figure 4.13a.  

The spatial variance is plotted for the τcmaq (Fig. 4.13b) and τ   (Fig. 4.13d) model AOD.  

The spatial coefficient of variance is plotted for the τcmaq (Fig. 4.13c) and τ   (Fig. 4.13e) 

model AOD.  
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The coefficient of variance is different for the prior and posterior values, because 

the spatial covariance calculation is based on the surrounding grid cells, which all have 

different scaling factors. The surface coefficient of variance is higher than posterior and 

prior model values, which were respectively 0.47 and 0.07.  

Consideration should be taken into account for the errors associated with spatial 

representation errors and between monitor measurements biases. An urban site should 

have less effect than rural sites when calculating over the spatial coverage. These 

variances reinforce the conclusion that MODIS is adding noise to the CMAQ because 

satellite OI injects high scaling factors, giving a correct regional average, but increasing 

the concentrations in some spatial locations more than others due to MODIS retrieval. 

4.3.7 Sensitivity tests 

Two sensitivity tests were conducted to understand the impact of both AERONET 

data and equation 4.7 on posterior model estimates. The two tests were conducted on an 

annual basis for all regions using the full set of methods and settings. The first test 

included running OI with only MODIS data. No AERONET was included in the data set; 

this will help understand if the AERONET sites are effective at or near AERONET 

measurement locations. The second test included running OI without equation 4.7, 

including changing the horizontal correlation length scale for errors in the modeled AOD 

(lxy) from 1 to 5. This test will help aid understanding of the effect of constraining the 

posterior value between the observation and the prior model. 

4.3.7.1 AERONET 

Data assimilation was repeated for the six regions on an annual basis, without 

using AERONET data. The results showed insignificant FES differences on a regional 

monthly evaluation, where the majority of the lowest FES method-settings were the 

same, and the few different changes in method-settings made insignificant changes from 

the FES values of the original OI runs that included AERONET.  
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Figure 4.12 Temporal coefficient of variance and variance (May 2002). (a) surface PM2.5 

coefficient of variance; (b)  τcmaq  variance; (c)  τcmaq  coefficient of 

variance;(d) τ   variance; (e) τ   coefficient of variance 

a 

b c 

d e 
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Figure 4.13 Spatial coefficient of variance and variance (May 2002). (a) surface PM2.5 
coefficient of variance; (b) τcmaq variance; (c) τcmaq coefficient of variance;(d) 
τ   variance; (e) τ   coefficient of variance. 

To evaluate AERONET local influence (at grid cells containing or near to AERONET 

measurements), three sites were chosen based on the availability of collocated or adjacent 

a 

b c 

d e 
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IMPROVE or STN observations. One site from IMPROVE and one site from STN were 

co-located (i.e. in the same grid cell) with AERONET. These sites were located at 

Bondvile, IL and Fresno, CA, respectively. In Columbia, SC an AERONET station and 

an STN monitor were in adjacent grid cells.  

Figure 4.14 shows a time series of PM2.5 concentrations (in May) for the surface 

observations and two 2.5MP   concentrations (i.e. OI performed with AERONET included 

and OI performed without AERONET include). The 2.5MP   values in Figures 4.14 (a 

through c) were chosen based on the best method-settings for the regional monthly 

evaluation. Both method-settings for the two posterior cases plotted (i.e. with and without 

AERONET) were found to be similar for these specific sites. The figures show that 

regional monthly method-settings are not necessarily the best for a specific site, since 

bias decreases are noticeable for Bondvile, IL (Figure 4.14(a) ) and  Columbia, SC 

(Figure 4.14(c)), but not for Fresno, CA (Figure 4.14(b)). In a regional monthly 

evaluation, the majority of sites followed the same method-settings, but this was not 

necessarily the case for all the sites. Figure 4.14(d) shows the same Fresno (CA) site but 

at the best method-settings for that site. The figure shows that posterior model PM2.5 bias 

has decreased when AERONET is included with MODIS. AERONET does have an 

effect on the specific sites (i.e. grid cell) in optimal interpolation, but due to its scarcity, it 

has negligible effect on the monthly regional analysis. 
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Figure 4.14 Time series for the Month of May of PM2.5 concentrations for observations, and 2.5MP   

values (w/Aeronet and w/o Aeronet) using the same regional monthly OI method/setting, for 

three sites; (a) Bondville (IL); (b) Fresno (CA); (c) Columbia (SC), and the (d)  Fresno (CA) 

using the best OI method/setting for the specific site 

a 
b 

c d 
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4.3.7.2 Equation 4.7 

To constrain the 2.5MP   value to be in-between the cmaq
2.5PM  and observation 

values, equation 4.7 coerces values into a predominated range. The equation was 

included to correct numerical problems in the OI calculation, such as negative values. 

Removing equation 4.7 showed insignificant differences in FES values on a regional 

monthly evaluation, which is similar to the AERONET sensitivity test.  Figure 4.15 and 

Figure 4.16 represent the difference between posterior and prior model estimates for lxy 

1-5 with and without equation 4.7, respectively. Interesting changes are listed as follows.  

Setting 4 in Table 4.3 was selected by the algorithm more frequently (49% of region-

month cases rather than 36% with equation 4.7).  The horizontal correlation length scale 

lxy=1 was selected more frequently (46% of region-month cases rather than 29% with 

equation 4.7).  The horizontal correlation length scales lxy of 3 and 4 FES differences 

were negligible between the four optimization schemes in Table 4.5. Figures 4.15 (with 

equation 4.7) show that the model concentrations have spatial smoothness compared to 

Figures 4.16 (without equation 4.7).  

The OI working window takes into account the error covariances within the 

window; this allows a continuous consistency for all the posterior concentrations in that 

window. Equation 4.7 forces a specific grid cell to be affected by its local error 

covariance for, preventing the posterior value from being in continuum with the 

surrounding posterior values. This effect will create non-smooth spatial concentrations as 

can be seen in Figure 4.15. Therefore the coercion forced by equation 4.7 is physically 

non desirable.     

The horizontal correlation length scale for errors in the modeled AOD (lxy) 1, 

showed no effect on the spatial plots (i.e. Figure 4.15(a) and Figure 4.16(a)). The 

differences start to become more evident for horizontal correlation length scale for errors 

in the modeled AOD (lxy) higher than 1 (i.e. 2-5). Figure 4.16 shows that AOD values 

are higher than AOD values in Figure 4.15, which mostly covers the Mountain, Midwest, 
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and South Central regions where equation 4.7 seems to localize MODIS effect. In both 

Figures 4.15 and 4.16, the change of lxy from 2 to 5 shows a few decreases in AOD 

value, as seen in the Mountain and the Midwest regions.    

4.3.8 MODIS retrieval at a finer spatial resolution 

Section 4.6 describes repeating OI with different MODIS input for a 2km 

retrieval, which is different from the 10km retrieval provided by NASA.  The evaluation 

was only conducted on half of the year (from January to June) due to the availability of 

only Terra data, and since Aqua is not available until July. Results showed insignificant 

differences on a regional monthly evaluation, which is similar to the AERONET 

sensitivity test. The 2km retrieval aggregated to 36km and mapped on the CMAQ 

domain, is equivalent to 10km aggregated to 36km. The benefit of having 2km retrieval is 

to apply OI at resolutions lower than 10km (e.g. 4km model grid resolution), which is 

crucial for a CMAQ forward model simulation at 4km. Therefore, this test would be more 

meaningful for a 4km resolution model simulation.   

4.3.9 Error metrics 

While the selection of optimal OI settings was done using the fractional error 

score (calculated using paired daily PM2.5) as a basis, alternate metrics such as RMSE 

could also be used. Regardless of the error metric chosen, correlation is not likely to 

improve significantly due to the use of monthly averaged scaling factors. Correlation (as 

measured by the coefficient of determination between paired model and observed daily 

PM2.5 values within a region) changed by a mean amount of -0.04 (when OI was 

optimized to decrease the fractional error). In the settings used in Figure 4.11, temporally 

invariant scaling factors are used for each grid cell and month, so improved correlation 

based on temporal skill is not expected. Improvements (or degradation in skill) reported 

in this work are mainly due to changes in spatial skill. Thus the prediction of specific 

times for particularly clean or polluted conditions is often not improved by assimilation. 
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Figure 4.15 Change between 2.5MP   and cmaq
2.5PM  model concentrations for the month of 

May, changing the horizontal correlation length scale for errors in the 

modeled AOD (lxy) from 1 to 5, figure a to e respectively. With equation 4.7. 

a 

b c 

d e 

µg m
-3

 



www.manaraa.com

73 
 

 

 
 

  

  

Figure 4.16 Change between 2.5MP 
 and cmaq

2.5PM  model concentrations for the month of 

May, changing the horizontal correlation length scale for errors in the 

modeled AOD (lxy) from 1 to 5, figure a to e respectively. Without equation 

4.7. 
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Furthermore, improvements in spatial skill can be limited by errors in τo such as 

spurious high values (see discussion below). RMSE sometimes improves when the 

fractional error score is reduced, and sometimes increases. This is because RMSE and 

fractional error score, while both measures of error, weight errors differently. 

One concern that arises in this work is whether to use settings optimized relative 

to IMPROVE or STN measurements to reflect both regional variability in concentrations 

and the urban values that affect the largest populations. Alternative approaches that blend 

these two datasets are also possible but have not been explored in this work. With a more 

urbanized group of monitoring sites, the settings based on comparison to STN will be 

sensitive to CMAQ errors in both urban primary and regional secondary pollutants. On 

the other hand, settings tuned to minimize error relative to IMPROVE will be more 

sensitive to CMAQ errors in regional secondary species, and in some areas, to dust and 

biomass burning. While future work will test simultaneous consideration of both datasets, 

we recommend that the application (e.g. climate forcing, human exposure, etc.) determine 

the weighting of the two monitoring networks or the weighting of the individual sites. In 

some region-month combinations, the same settings may be best for both networks, but in 

general this was not the case.  

4.3.10 Cross validation 

While the cross-validation approach of Figs. 4.9c and 4.9d gives an indication of 

the consistency in performance across the settings, more exhaustive cross validation 

approaches could be employed, such as comparing the same settings over multiple years. 

The limited cross-validation quantifies the effect of using settings trained on one period 

for use on OI of another period; it is therefore an example of withhold data from the 

training set.  
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4.4 Discussion 

4.4.1 Discussion of OI performance in the western U.S. 

 A few alternative explanations were investigated to understand the large 

differences in AOD in the Western U.S. (usually τo > τcmaq) which often led to scaling 

factors in excess of 5.The alternative explanations of the CMAQ-MODIS AOD mismatch 

in these areas included (i) missing biomass burning emissions in the model; (ii) negative 

model bias in dust; (iii) positive bias in τo; and (iv) the use of a “clean condition” 

boundary in the current work.  

Fires are thought to be well represented in the 2002 NEI report [U.S 

Environmental Protection Agency (EPA), 2008]. This is supported by a successful test of 

whether CMAQ reproduced large fire events and their impacts on PM2.5 concentrations. 

A large, isolated fire outbreak occurred in southwestern Oregon on July 28
th

 and 29
th

 and 

emissions from this fire event were well represented in our CMAQ implementation 

[NICC, 2002]. On July 31
st
 2002 PM2.5 observations were available for the southwestern 

part of Oregon showing a maximum of 64.5 µg m
-3

,
 
compared to the model estimate 

maximum of 57.5 µg m
-3

. AOD values in the region peaked at 1.0 and 1.2 for 

observations and CMAQ, respectively. 

Much of the limited ability of τo to improve PM2.5 performance statistics relative 

to surface measurements is hypothesized to come from errors in τmodis. The first piece of 

evidence of a lack of τo skill comes from an assessment of correlation between τmodis and 

τanet. Figure 4.17 shows the coefficient of determination for all the sites in May 2002 from 

west coast to east coast of the United States. Correlation is higher in the Northeast than 

that in the Pacific.  

 PMcoarse exhibits negative bias as explained in section 3.1.1, and a high bias in τo 

over the Western U.S. is acknowledged in the literature and supported by an AERONET-

MODIS AOD comparison. To compare the effects of these two known biases on 
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assimilation, we evaluated three months (April-June) at the Pacific region for AOD bias 

in CMAQ from missing coarse mode aerosols, relative to effects of τo positive bias. The 

CMAQ coarse AOD bias was calculated coarse PM model bias was calculated and 

subsequently converted to AOD units using assumed aerosol properties for the coarse 

aerosol. Fractions of 88% coarse PM as dust and 12% as sea salt were used, based on 

IMPROVE measurements averaged over the region [Hand, et al., 2011]. Constants from 

Table 4.1 were used to calculate the sum of coarse AOD and sea salt AOD, and equation 

4.2 was used assuming a 1 km boundary layer height, since the bias is based on paired 

surface and model concentrations. Independently, MODIS-AERONET AOD daily paired 

averages were compared for three months (April-June). Histograms for the coarse PM 

bias (Figure 4.18a) and the associated AOD values (Figure 4.18b) show skewed 

distributions with modes at –1.3 µg m
-3

 and -0.001 AOD units, respectively and with 5% 

lower percentiles at -14.76 µg m
-3

 and -0.011 AOD units, respectively. Although there is 

negative bias in PMcoarse, the extinction contribution of coarse PM in the atmosphere is 

low. 

The MODIS-AERONET paired AOD comparison quantifies the positive τo bias 

in this period and season (mode of 0.09, and 5
th

 and 95
th

 percentiles of 0.038 and 0.34, 

respectively). The much larger magnitude of MODIS bias relative to that associated with 

coarse PM (converted to AOD units) supports that τmodis biases are the main contribution 

towards the OI performance limitations over the Pacific. 

The effect of the clean boundary condition (which led to a mean AOD in the 

westernmost model grid cells of ~0.03) may be comparable in magnitude to the MODIS 

bias. The Northeast Pacific mean AOD is 0.14-0.15 with 45-49% in the fine mode work 

[Remer et al., 2008].  Therefore, the negative bias in the model in the Western U.S. from 

the boundary contribution may be of order 0.1 AOD units. Furthermore, the use of 

boundary PM2.5 concentrations too low aloft may cause errors in the modeled vertical 
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profile of PM2.5, and evaluation of modeled vertical profiles by in situ and remote sensing 

should be incorporated into future work. 

Other studies have investigated τmodis bias over the western U.S. Prados et al. 

[2007] compared GEOS satellite AOD with τmodis and τanet. Their study showed that τmodis 

and τanet were more highly correlated in the eastern, central, and southeastern part of the 

United States, and exhibited low to moderate correlation in the western United States. 

Engel-Cox et al. [2004] made a statistical analysis between PM2.5 surface concentration 

(from IMPROVE and STN sites) and τmodis, and found that τmodis and surface PM2.5 

 

Figure 4.17 Coefficient of determination of τanet versus τmodis for May 2002 
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Figure 4.18 Histograms for biases in PMcoarse (model-observation) in aerosol mass (a) 
units of µg m-3 and after conversion to AOD units (b).  Panel (c) shows 
τmodis – τanet.  Figures are based on April-June in the Pacific. 

µg m-3 

AOD 

AOD 
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measurements were correlated in eastern regions of the United States, but weakly to 

moderate correlated in the western regions, specifically in Los Angeles (California), 

Portland (Oregon), and Salt Lake City (Utah), but Denver (Colorado) showed a moderate 

correlation in comparison to the others specified. Abdou et al. [2005] attributed τmodis 

positive bias (relative to τanet) to surface brightness over deserts and subpixel water 

contamination at coastal sites. Drury et al. [2008] reduced positive τmodis bias in the 

western U.S. by using alternate surface reflectances in the 0.65 to 2.13 µm wavelength 

region. Hu [2009] used τmodis to estimate PM2.5 surface concentrations in locations with 

sparse surface PM2.5 monitoring. Regressed PM2.5 values (with τmodis as the primary 

regression input) were more strongly correlated with PM2.5 in the eastern U.S. than the 

western U.S. 

4.4.2 Alternate input data options 

Reducing observed AOD bias would likely improve the results of OI over the 

western U.S. Alternatives to MODIS exist, such as GOES and the Multi-angle Imaging 

SpectroRadiometer (MISR) [Diner et al., 1998], which has the ability to capture images 

from nine angles, compared to for a single image at nadir viewing angle for MODIS. 

Several investigators have used MISR to infer PM2.5 data over the U.S. and the world. Liu 

et al. [2004], in a comparison of MISR-derived PM2.5 concentrations with surface 

observations and model predictions, reported the ratio of PM2.5 (from MISR) to 

observations was 0.9-1.1 in the eastern U.S. and 0.5-0.75 in the western U.S. 

Simultaneous use of MISR together with MODIS is a common approach. Chatterjee et 

al. [2010] compared MODIS and MISR to AERONET in a geostatistical fusion 

approach; their work showed annual correlation coefficient versus AERONET of 0.63 

(MISR) versus 0.3 (MODIS) over the western U.S. Mishchenko et al. [2009] found that 

MISR bias (versus AERONET) was slightly better than that of MODIS. Van Donkelaar 

et al. [2010] used MODIS and MISR AOD, coupled with AOD to PM2.5 conversion 
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factors from GEOS-Chem, to derive gridded 6-year average global PM2.5 concentration 

estimates.  Satellite observations suspected of excessive bias (due to high surface albedo 

or poor comparison with AERONET) were excluded. Van Donkelaar et al. [2010] also 

found MISR more reliable than MODIS for the western U.S. These suggest that the use 

of a selective combination of MISR and MODIS AOD could improve OI performance 

over the Western U.S. 

The degree of improvement from infusing MISR AOD into the current OI 

technique is uncertain.  For example, although Van Donkelaar et al. used primarily MISR 

AOD in the Western U.S., but normalized bias [(model regressed data – 

observation)/observation] in the Western U.S. remained at about +1.0, versus a value of -

0.1 to +0.1 over the eastern U.S. The increase in normalized bias is in part due to the 

cleaner conditions over many parts of the Western U.S., such that relatively small 

absolute bias (e.g. 2 µg m
-3

) can cause large normalized bias. 

The MODIS deep blue algorithm [Hsu et al., 2006] may decrease errors due to 

ocean glint and high surface reflectance, common in regions with high dust 

concentrations [Hsu et al., 2004]. Deep blue MODIS AOD has been favorably evaluated 

over desert regions of Asia [Hsu et al., 2006]. For the southwestern U.S., Drury et al. 

[2010] did not find any significant difference between deep blue and improved MODIS 

retrievals [Drury et al., 2008]. However, use of MODIS deep blue product over the 

western U.S. should be further investigated. 

Dynamic OI may also improve assimilation results relative to the static technique 

adopted in the current work. Static OI refers to the case where the posterior result from 

OI does not influence future model states. In dynamic OI, the 2.5MP   fields influence the 

initial conditions for simulation of the subsequent period. Adhikary et al. [2008] 

compared static and dynamic OI over South Asia over a one month simulation. Collins et 

al. [2001] also used dynamic assimilation with OI for a two week period over South Asia. 

The drawback of the dynamic OI using MODIS is the sparseness of daily MODIS 
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retrievals, and geostationary satellites with improved temporal coverage are more 

appropriate for dynamic assimilation. 

Improved AOD datasets, that have been subjected to enhanced quality control, 

bias correction, or advanced inversion, can often be more effective to use for data 

assimilation. One improved dataset is the MODIS level 3 product 

[http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=MODIS_DAILY_L3], 

and another has recently available from the U.S. Naval Research Laboratory 

[http://www.nrlmry.navy.mil/aerosol_web/]. The USNRL product has reduced systematic 

and random errors [Hyer et al., 2010]. One potential drawback in these publically 

available products is their one degree spatial resolution. 

4.4.3 Intercomparison of AOD OI studies 

A number of studies are available for comparison to the current work. However, 

previous OI applications have focused on aerosol AOD and climate forcing (rather than 

PM2.5), and have used AOD as the main variable for tuning OI settings and for 

performance evaluation.  Therefore, we compare changes in AOD due to OI (rather than 

changes in PM2.5) to allow comparison to studies that reported AOD performance 

statistics but not PM2.5 statistics. Collins et al. [2001] used a dynamic OI model over the 

period of two weeks to improve model estimates over the Indian Ocean. The main goal of 

this study was to improve the model short term estimates for aerosols. Carmichael et al. 

[2010] studied the effect of static OI for the period of four years over Asia using quality 

assured level 3 MODIS AOD, and Park et al. [2011] assimilated satellite AOD to adjust 

model AOD over East Asia. Park et al. used season-specific observation and model 

errors.  

In the Asian studies, mean τanet was typically between 0.1 and 0.2 over ocean and 

0.3 to 0.5 over land, while the corresponding value for the CONUS domain of the current 

work was 0.2. All studies showed an increase in the coefficient of determination, by 
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~0.14±0.04 in the Asian studies and by 0.07 in the current work.  All studies showed a 

reduction in the absolute value of bias, with a reduction of 0.25±0.15 AOD units in the 

Asian studies, and a reduction of 0.08 in the current work. Studies with the largest initial 

errors saw the largest corrections from assimilation. The magnitude of bias improvement 

seen over land in Asia was not seen to the same extent in the current study. We 

hypothesize that part of the reason for this is that we optimized settings for PM2.5 

improvement rather than for AOD improvement. The relationship between the two is not 

necessarily linear [Kumar et al., 2008; Schaap et al., 2009; Engel-Cox et al., 2005], and 

greater improvement would be achieved if settings were optimized to reproduce τanet. 

Furthermore, the lower levels of AOD and aerosol burden in the CONUS domain limits 

the amount of improvement to be expected from assimilation of τmodis. On the other 

hand, the improvement in this study is dependent on the discarding of month-region 

specific results where the posterior degrades performance relative to surface PM2.5. 

Without this replacement, AOD performance relative to AERONET may have decreased 

in many months and regions. 

4.5 Conclusion 

Data assimilation was used to produce PM2.5 estimates from a combination of 

cmaq
2.5PM , τmodis, and τanet. The specific assimilation technique was optimal interpolation 

(OI) of AOD performed on the CMAQ model grid. Results were compared stemming 

from four different sets of parameters for background (e.g. CMAQ) error covariance and 

observation errors. Furthermore, results were compared using two different methods for 

application of scaling factors calculated from OI. The methods were applied for 2002 

over the continental United States, and six separate regions were used for evaluation. Our 

results show that OI can be implemented using two successful optimization approaches. 

The first optimization scheme uses spatially- and temporally-invariant settings and simple 

temporal (monthly) averaging of model and satellite data. The second approach uses 
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customized OI settings for specific regions or time periods. Averaging and correcting all 

model hours (case a) was the method that most frequently produced superior error scores. 

In both schemes, it was critical that the assimilation result was not used in cases where 

assimilation degraded model-measurement agreement. These “degradation” assimilation 

cases occurred in 38% of the possible realizations.  

Multiple features in the OI results are noteworthy and are listed as follows: 

Setting 4 in Table 4.3 was selected by the optimization routine most often, which was the 

combination of errors giving the highest weight to the model and the lowest weight to 

observations. The model error correlation length of 36 km led to superior posterior error 

scores more frequently than other lxly settings (up to 150 km was investigated, but this 

variable is not independent). The improvement from the prior to the posterior PM2.5 was 

greatest in magnitude and spatially most consistent during summer. One possible reason 

for this is that summer has the largest and most consistent negative bias in the prior and 

OI typically led to increases in PM2.5. Alternately, the summertime AOD observations 

may be more accurate and noise-free due to minimized snow cover. The OI algorithm as 

implemented in the current work improved bias more than error. Using model AOD only 

during hours with observations gave significantly different scaling factors and overall 

results than averaging all hours of CMAQ output. Averaging and correcting the overpass 

hours (method c) was sometimes the method that lead to the best error score, but the 

interpretation of this finding is not clear because correcting the overpass hours only made 

a much smaller change in monthly averaged PM2.5 than the other techniques. In some 

month/region combinations, a small correction exceeded the performance of larger 

corrections from the method c (average and correct all hours). 

Investigation of the settings that produced the best assimilation results was 

initially done looking independently at each month and region.  This led to an 

improvement in fractional error score from 1.2 to 0.97 at IMPROVE sites, and from 0.99 

to 0.89 at STN sites. The analysis was repeated with constraints such as requiring a single 
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method and setting for all months in a specific region, or for all months and all regions 

(i.e. a single year-long nationwide method and setting). As long as months with degraded 

PM2.5 performance were identified and analyzed with their prior PM2.5 values (instead of 

their posterior PM2.5 concentrations), the results were similar to the results from the 

approach with independent settings for each month and region. Most of the instances 

where OI degraded model skill occurred in the Pacific and Mountain regions.  

The results show that the assimilation has different impacts in different regions as 

well as on different months of the year. OI achieved modest improvements in most 

performance metrics, but the eastern regions of the U.S. showed more improvement than 

the western regions. We believe the poor performance over the Western U.S. was mainly 

caused by MODIS random and systematic errors, although the impact of lateral boundary 

conditions needs more study. The possibilities of missing biomass burning emissions, 

negative bias in modeled coarse PM, and the use of a clean boundary condition, were 

evaluated. The first two potential reasons are likely not the main cause of the limited 

success of OI in the Western U.S.  

Recommended areas for future improvement in satellite data assimilation for 

aerosol estimation include the use of improved MODIS retrievals as proposed in 

collection 6, and the integration of AOD from both MISR and MODIS. 
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CHAPTER 5: SURFACE DATA ASSIMILATION RESULTS 

5.1 Introduction 

Data assimilation using surface measurements has been shown to improve model 

estimates for both optimal interpolation [Tombette et al., 2009, Wu et al., 2008] and more 

advanced data assimilation methods [Chai et al., 2007, Hakami et al., 2005, Pagowski et 

al., 2010, Liu et al., 2011]. The novel part of this work is the implementation of more 

advanced methods to calculate the model and observation error covariance for OI using 

methodologies proven to be effective in 3D-var and 4D-var data assimilation studies. In 

addition, three cross validation methods, usually performed in regression model studies, 

[Kim et al., 2009, Sheppard et al., 2005] are used to evaluate the OI performance based 

on the error covariance matrices calculation performed. The methodologies for OI 

implementation are described in section 5.2. This includes the optimal interpolation 

equations used, the observation methods used to calculate the model error covariance, 

and the representation error that is used to calculate the observation error covariance. 

Cross validation methods are viable for chemical transport model data assimilation 

evaluation and previous studies show the importance of implementing these methods. 

The results, presented in section 5.3, illustrate first the observation method 

calculations followed by an OI algorithm case study for January 2002. Detailed spatial 

inputs and outputs are presented as physical and mathematical evidence of OI 

performance. The annual evaluation of OI for the continuous U.S. is described in addition 

to the sensitivity test performed to evaluate the minimum number of available 

observations required to provide an improved posterior model estimate. The chapter 

further discusses OI performance over the continuous U.S., presenting the positive OI 

performance results and comparing them to previous studies. An additional insight is 

provided for the utilization of the current methods to calculate the error covariance 
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matrices and the cross validation methods to further advance data assimilation methods 

such as 3D-var. 

5.2 Methodology 

After regridding surface PM2.5 measurements to the model domain, OI was 

performed between PM2.5 monthly averages from both surface measurements and the 

prior model values.  The statistical analysis was based on the monthly averages for the 

whole domain (i.e. pairing monthly averages of the model-observations). A cross 

validation method was used to evaluate the surface optimal interpolation method, which 

included using both stratified and simple random validation. 

5.2.1 Surface data assimilation via optimal interpolation 

The same OI equation was implemented from section 4.2.3 but different settings, 

models, and observation error covariance matrices were used. The model error 

covariance matrix was derived by applying the observational method that assumes a 

network of dense surface measurements [Hollingsworth and Lonnberg, 1986]. First the 

description of the observational method is given followed by the optimal interpolation 

equations used. 

5.2.2 The observational method 

The following method was adapted from the Chai et al. [2007] assimilation of 

surface ozone measurements into the STEM model using 4D-var for the eastern U.S for 

12 hours in July 2004. The assimilation was evaluated using surface ozone data withheld 

from the assimilation process.  Initial O3 concentrations were used as the control variable 

to minimize the cost function. The model error covariance was calculated using both the 

NMC method [Parrish and Derber, 1992] and the observational method [Hollingsworth 

and Lonnberg, 1986]. The assimilation results showed an improvement relative to prior 

model values. 
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The observational method outputs provide average correlations as a function of 

distance. To insure that the correlation is unbiased, the biases are then removed from the 

correlation using two methods.  The first calculates the bias of each site individually 

during each month and subtracts the annual average. The second calculates the mean bias 

(all sites) for each month and subtracts that. This is shown in equations (5.1) and (5.2), 

respectively. 

         
 

  
∑    

  

   

 
m=1 to12; and a fixed site i (5.1) 

         
 

 
∑   

 

   

 
i=1 to N; and a fixed month m (5.2) 

where 

     is the model-observation difference for a specific site i and month m 

      is the model-observation difference for a specific site i and month m with bias 

removed using equation 5.1.  

      is the model-observation difference for a specific site i and month m with bias 

removed using equation 5.2.  

 

As mentioned both bias removal procedures were tested, and both equations gave 

similar results, but equation 5.2 gave a slightly higher correlation, therefore bim2 is used 

in the following equations.  

The observational method [Hollingsworth and Lonnberg, 1986] calculates the 

average correlation between observational increments in two model grid cells i and j 

[Chai et al, 2007], which is shown in equation 5.3: 
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where  

    is the PM2.5 surface observation (g m
-3

), 

       is PM2.5 model prior estimates (g m
-3

), and the overbar ‘—‘ denotes averaging 

over time. 

Then parameters in equation 5.4 are fitted by the nonlinear least square method:  
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 ] 

(5.4) 

  

where  

  : Correlation between the observation and prior model increment at two stations with 

horizontal distance (lh), calculated at y intercept. 

lxy is the distance between two model grid cells i and j. 

lh is the correlation length scale in km. 

p is a fitted exponent (5.4). 

5.2.3 Optimal interpolation equations 

The optimal interpolation equations are similar to section 4.3 as follows: 

                   
(5.5) 

Equation(4.4) is used to calculate K 
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where variables are defined as follows: 

      : model fractional error 

       : PM2.5 prior model estimate (g m
-3

)  

      : model minimum error (g m
-3

) 

   : Observation fractional error 

    : PM2.5 surface observation (g m
-3

) 

   : Surface minimum error (g m
-3

) 

      : is the representation error (g m
-3

). 

     : is the absolute observation error. 

x  : model grid cell size (km). 

Lrepr : represents the radius of influence of an observation (km). 

Lmin and Lmax : are the minimum and maximum radius of influence for the 

observation at rural and urban locations, respectively. 

Furb : fraction of urban area in a grid cell.  

 

Pagowski et al. [2010] parameterized representativeness error using equation 5.8, 

a formula from Elbern et al. [2007]. It is important to control the observational spatial 

length influence (equation 5.9) based on locations. For instance urban sites should have 

less radius of influence while rural areas should have larger influences. The 

representative length here is different from Pagowski et al. [2010], which uses one 

minimum and one maximum fixed length. Rather, here the urban area fraction adjusts the 

difference between the rural and urban locations that adjusts the length from the 

minimum urban length (equation 5.9). Figure 5.1 graphs representation error as a 
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function of urban fraction in a grid cell. The representation error ranges from 0.8 g m
-3

 

for rural areas to 4.2 g m
-3

 for urban areas.   

 

Figure 5.1 Correlation between the representation error and the fraction of urban area in 
a grid cell. 

Parameters for equation (5.6) were calculated using the observational method, 

where the monthly average bias (model-observation) [equation 5.1 and 5.2] for all the 

sites was calculated for 12 months, obtaining 12 inputs for equation (5.3). Each one of the 

12 months had more than 700 bias-corrected observational increments, which are the 

amount of sites after regridding to the domain. From equation 5.3 the average 

correlations were calculated over distance and the parameters for equation (5.6) were fit. 

The model fractional error and minimum error were constant values of 0.35 and 1g m
-3

, 

respectively.  The observation fractional error (0.05) and minimum error (0.4 g m
-3

)
 

were
 
adapted from USEPA [2012], a 3-year quality assurance report for 1999 through 
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2001. The errors were based upon the differences between two networks that measure 

surface concentration and their median absolute error, shown in Figure 3.2 of the report.  

For absolute observation error and for the minimum and maximum radius of influence for 

the observation at rural and urban locations, we adopt values from Pagowski et al. [2010], 

with values of 2g m
-3

, Lmax = 50km, and Lmin = 2km, respectively. 

5.2.4 Cross validation methods 

Cross validation [Browne, 2000] is a statistical method used to validate 

performance of a forecast model, regression model, or other model. The method helps 

inform the validity of a certain procedure towards a sample of data. This is accomplished 

by dividing a dataset into two samples; the first sample is used towards weight calibration 

in a regression model; the calibrated weights are then used to validate the criteria of the 

regression model proposed using the second set.  

Typically [Browne, 2000], the data is divided into two parts. One is used for 

training the regression model parameters, while the other is used to validate the statistical 

accuracy of the regression model. It is important however to leave 70%-90% of the 

sample data for the regression model to accurately represent the state of the system. 

Therefore multiple methods have been proposed for removing data for validation, such as 

the method of leaving out one at a time for a sample size of N and repeating the cross 

validation N number of times, but this is computationally expensive. Another method is 

to simplify this by leaving out X (some) at a time, where validation samples have to be 

greater than one.  The validation [Gilbert, 1987] data has to be withheld randomly from 

the sample data each time, which can be accomplished by the simple random method and 

the stratified method.  

Cross validation has been used in PM2.5 exposure models, PM2.5-AOD correlation, 

and land use regression modeling. In two different studies, Paciorek et al. [2009, 2007] 

withheld 10% of the training observations for land-use regression model cross validation. 
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Ross et al. [2007] and Henderson et al. [2007] used a leave-one-out cross-validation 

method. Finally, Kumar et al. [2011]  used both the leave-one-out cross-validation 

method and division of the data set randomly into a training data set and a withheld 

dataset. Kim et al. [2009] validated a PM2.5 exposure model for Los Angeles and 

surrounding areas using average area-wide monitors. Exposure was based on monitors 

closest to the subject or by kriging the observation monitors over the domain. The 

correlation was implemented by selecting 2000 residential locations and stratified for up 

to 3 random selections for each stratum. Sheppard et al. [2005] used a personal exposure 

model to study the effect of PM2.5 on areas with increased air pollution in Seattle. The 

cross validation included both simple and stratified random sampling in addition to 

averaging of all individuals in the population.  

5.2.5 Surface optimal Interpolation methods and settings 

The surface assimilation was conducted similarly to the satellite assimilation, 

using monthly averages of PMo and PMm. Over 1500 PM2.5 surface measurement sites 

were available in the US for 2002 [U.S Environmental Protection Agency (EPA), 2002]. 

All hourly data was averaged to 24 hour averages. Cross validation was performed 3 

times using slightly different procedures for selecting the monitor values for cross 

validation.  In all three cases, the cross validation was performed 10 times, with 10% data 

withholding in each repetition.  Withheld sites were sampled randomly without 

replacement.  Therefore, each monitor value was used in one (and no more than one) of 

the 10 repetitions. Comparing ten repetitions informed the validity of withholding 

different random datasets towards the same outcome. Validation of the current OI 

implementation is achieved by comparison between all three methods. A conclusion that 

the methodology was correctly implemented would be drawn if all cross validation 

methods managed to improve the model estimates. In contrast, if one or more cross 
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validation methods disagree in the final conclusion, then more investigation is required to 

understand the discrepancies.        

The three cross validation methods are summarized in Table 5.1. To compare the 

prior and posterior model results from equation 5.5, we followed Sheppard et al. [2005] 

for stratified and unstratified cross validation methods. It is important to mention that all 

three cross validation methods in Table 5.1 validated the withheld data after averaging 

the observations. For the first two methods, the data is averaged before performing cross 

validation. For the third method, the withheld data is averaged (if more than one data 

point is withheld) before validation.  

Table 5.1 Cross validation methods 

 Cross validation method Description 

1 Stratified-gridded Using the stratified random sampling after regridding 
observations to the domain 

2 Unstratified-gridded Using the unstratified random sampling after regridding 
observations to the domain 

3 Unstratified-ungridded Using the unstratified random sampling before regridding 
observations to the domain 

The stratified-gridded cross validation method assumed that each stratum should 

have the same sampling amounts of data withheld, proportional to the other stratums 

(proportionate stratification). This is accomplished by using the same fraction withheld 

for each stratum, regardless of the amount of data points. As an example for three 

stratums with 4, 8, and 12 data points and a 50% sampling fraction, the amount of data 

points withheld would be 2, 4, and 6, respectively. The amount of strata was calculated 

based on a 9x9 grid cells. For validation, the monthly average posterior and prior model 
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concentrations were compared with the withheld monthly average surface measurements. 

All statistics in this chapter are based on comparison to withheld data; data to inform the 

OI is never used in evaluation. 

A separate set of repetitions were formulated based on the stratified-gridded cross 

validation method, but the strata have unequal numbers of data points (disproportionate 

stratification). The method randomly leaves one observation point out from all the strata 

at a time, until the polygon with the maximum number of observations is empty. The 

maximum number of observation in one stratum is 32 or 33 depending on the month. The 

stratum that removes its observations remains empty until the stratum with the maximum 

number of observations is empty. The method is repeated 10 times to check the effect of 

choosing random observations each time. The number of repetitions for January is 32 

runs, each withholding data for 10 random times yielding 320 files. This method will 

inform the amount of observation data to be withheld, which will give a sufficient model 

improvement.      

In contrast with the satellite assimilation, the moving window did not use a 5x5 

grid cell size; rather, a sensitivity test was performed to accommodate the correlation 

length scale. These sensitivity tests included window sizes 5x5, 9x9, 13x13, 19x19, 

25x25, and 31x31 to choose the appropriate window size. Tests were compared by model 

skill evaluation at withheld monitors; the same monitors were withheld for each window 

size for valid intercomparison.  Model skill metrics included correlation coefficient, root 

mean square error (RMSE), factional error (FE), and normalized mean error (NME).  

5.3 Results 

5.3.1 Observational method results 

Figure 5.2 shows the average correlation coefficient as a function of distance 

between observations (explained in section 5.2). Equation 5.4 had a 0.7 intercept 
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(                                                        , a 260km correlation 

length scale, and a 1.5 power. Equation 5.4 can be written as: 

       [ 
   
   

      
] 

 

Figure 5.2 Average correlation coefficient over distance between observational 
increments and two models grid. 

The fitted line does not fall below zero despite the negative data because equation 

5.4 cannot give a negative value.  

5.3.2 OI working or moving window. 

Optimal interpolation is typically implemented over a limited spatial window.  In 

chapter 4, a 5x5 window was used.  In this chapter, windows of variable size are 

explored. Varying the size of windows is motivated by the fact that error-covariance in 

the model extends out to large distances (e.g. Figure 5.2). Figure 5.3 compares prior and 
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posterior error metrics and computational effort as a function of the OI window sizes. 

Specifically, performance metrics (i.e. FE, R
2
, and NME) are found in Fig. 5.3a, RMSE 

in Fig. 5.3b, and log of machine run time in Fig. 5.3c. The error results are very similar 

for the 9x9 to 31x31 windows, while the run times increase dramatically as the window 

size increases. Taking into account both metric values and OI run times, the 9x9 window 

was chosen as an optimal value for all the runs, and is used in the remainder of this 

chapter. 

5.3.3 OI algorithm case study for January 2002 

The example for the Satellite OI was taken for the month of May because of the 

high AOD spatial coverage compared to January (due to snow and cloud cover). For the 

surface OI, all the months could provide substantial information, so the example focused 

on the first month of the year. Figure 5.4 shows the fractional urban percent of grid cells 

according to the meteorology data by MCIP. Figure 5.5 maps PM2.5 concentrations for OI 

inputs (5.5a, 5.5c) and OI output (5.5e) for January 2002. The output example shown is 

calculated using 90% of the available grid cells with available data, with the withheld 

grid cells chosen according to the stratified-gridded cross validation method (described in 

section 5.5). Panels on the right are the frequency distributions of surface PM2.5 and 

model-surface paired PM2.5 from the spatial plots. Model values (prior and posterior) are 

paired with observational values, since the observational measurements were relatively 

few (only about 700 grid cells) compared to the model grid cells (n=20412).   

Mean values for the whole domain for Figs. 5.5a, 5.5b, and 5.5c are 11.2, 3.6, and 

3.4 µg m
-3

, respectively. The paired model observation value for Figs. 5.5b and 5.5c are 

12.25 and 10.64 µg m
-3

, respectively. Figure 5.6a and 5.6b show that CMAQ posterior 

values are decreased mostly in the eastern parts of the U.S and increased mostly in the 

western parts of the U.S.  
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Figure 5.3 Sensitivity test Metric for different OI working windows (Figures (a) and (b)) 

and the OI duration time for each window (figure c, by fixing the random 

withheld input data, calculated using stratified-gridded cross validation in 

section 5.5.   

a 

b 

c 
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Figure 5.4 Fractional urban percent of cell based on land 

OI improved the forward model estimates and decrease the amount of model-

observation bias towards zero for the month of January. The highest decrease in PM2.5 for 

the model is shown around the Boston, MA, area, and the highest increases are shown 

around Salt Lake City, UT. The histograms in Figures 5.5 and 5.6 show that the posterior 

model starts to take the shape of the surface measurements, and that the average PM2.5 

decreases over the domain.  Although the increases are more substantial (up to 25 µg m
-3

) 

compared to decreases (as low as -17 µg m
-3

) the overall frequencies of the decreases are 

higher.  

OI predominantly corrects CMAQ positive bias (i.e. overprediction) in the eastern 

U.S. and CMAQ negative bias (i.e. underprediction) in the in the western U.S. The model 

had a negative bias for PM2.5 along the U.S.-Mexico border in the southwestern U.S. 
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(discussed in section 4.17). Overall the model changes are spatially spread between -5 to 

5 µg m
-3

, where Figure 5.7 shows a scatter plot for the withheld model-observation pairs 

for prior and posterior concentrations, Figure 5.5c and 5.5e, respectively. Figure 5.7 

shows the posterior values shifted towards the one to one line, with an improvement in 

the correlation coefficient from 0.05 (prior) to 0.27 (posterior). The values reflect only 

one random test out of ten repetitions, where the maximum improvement for the month 

of January was 0.3 to 0.9 for prior and posterior values for one of the tests. The mean 

correlation for the ten random runs, in addition to other metric values, will be shown in 

the following section. 

5.3.4 Application of surface OI to all months of 2002 

The previously demonstrated OI algorithm was comprehensively applied to all 

months for the year 2002 for three cross validation methods described in section 5.5. 

Figure 5.8 demonstrates the annual (2002) metric evaluation for the three cross validation 

methods; stratified-gridded (a) and (b); unstratified-gridded (c) and (d); and unstratified-

ungridded (e) and (f). Correlation coefficient, RMSE, FE, and NME are calculated for 

each month as the metric average of the ten random runs. The results show that the 

annual metric improvement is for all the months of the year, and this is true for all the 

random cases done for each month. The improvement over all months of the year was 

random and the pattern of improvements would change if cross-validation was repeated. 

Table 5.2 contains the annual average metric improvement for the three cross validation 

methods. The correlation improved from 0.36 to 0.76, the FE decreased from 43% to 

15%, the NME decreased from 36% to 13%, and RMSE decreased from 5.39 to 2.32 µg 

m
-3

 for prior and posterior values respectively. The results are similar between all cross 

validation methods and could slightly change for a set of random runs. The three cross 

validation methods show similar results leading to a conclusion, as stated in section 5.5,  
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Figure 5.5 Example of the OI algorithm inputs and output (January 2002). (a) map and 

(b) histogram of monthly mean surface PM2.5; (c) map prior model PM2.5; (d) 

histogram of monthly mean of observation-prior model PM2.5 paired; (e) map posterior 

model PM2.5; and (f) histogram of monthly mean of observation-posterior model PM2.5 

paired, both e and f were calculated using stratified-gridded cross validation 

a 

b 

c 

d 

e 

f 
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Figure 5.6 Example of the OI algorithm change (January 2002). (a) map and (b) 

histogram of monthly mean model PM2.5 concentration, between posterior and prior 

values (i.e. Figure 5.5(e) – Figure 5.5(c)). Using stratified-gridded cross validation in 

section 5.5. 

 

 

Figure 5.7 Scatter plot for the model-observation pairs (January 2002) of the prior and 

posterior concentrations, for Figure 5.5c and 5.5e respectively. Using stratified-gridded 

cross validation in section 5.5 
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Figure 5.8 Annual (2002) metric evaluation for cross validation methods; 
stratified-gridded (a) and (b); unstratified-gridded (c) and (d); 
unstratified-ungridded (e) and (f), explained in section 3.9. 

 

a b 

c d 

e 
f 
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Table 5.2 Annual average metric improvement for the three cross validation methods. 

 Strata_Gridded Unstrata_Gridded Unstrata_Ungridded 

 Prior Posterior Prior Posterior Prior Posterior 

r2 0.36 0.76 0.36 0.61 0.32 0.65 

FE 43% 15% 42% 20% 40% 19% 

NME 36% 13% 36% 18% 36% 17% 

RMSE 
µg m

-3 
5.39 2.32 5.37 3.08 5.57 2.97 

 

that specific aspects of our methodology were correct, such as the observational method 

and the representative error. 

MFB versus MFE “soccer plots” [Morris et al., 2005] were calculated for each 

month as the average of the ten random runs and are graphed in Figure 5.9. Figures 5.9 a, 

b, and c represent the stratified-gridded, unstratified-gridded, and unstratified-ungridded 

cross validation methods, respectively. The plots represent monthly (from 1-9 plus O, N 

and D for Oct, Nov, and Dec, respectively) values for 2002. The rectangular areas in the 

soccer plot correspond to performance categories, with excellent, good, average, and 

problematic areas radiating out from the origin. Arrow origins correspond to the 

performance of the prior, and arrow termini correspond to the posterior performance. 

Improvements in both bias and error were substantial for all of the three cross validation 

methods. The fractional errors in all months were lower than 20% in value, and the 

fractional bias was close to zero, or had a low negative value. 

Figure 5.10 shows the result of OI applied to PM2.5 concentrations for a complete 

year. Figure 5.10 maps 2002 annual average kriged surface observations from the AQS 

and IMPROVE networks. Figures 5.10b and Figure 5.10c map the 2002 annual average 

prior and posterior values, respectively. Posterior values were based on the first random 

stratified-gridded cross validation method for each month, described in section 5.5. 
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Figure 5.9 Monthly (1-9 plus O, N, and D for Oct, Nov, and Dec, respectively) prior and 
posterior Fractional Bias versus Fractional Error for three cross validation 
methods described in section 5.5; (a) stratified-gridded; unstratified-gridded; 
and (c) unstratified-ungridded. The four (from excellent to problematic) 
performance categories described in the methods section are shown visually 
by the rectangular zones. The beginning and ending of the arrows represents 
the prior and posterior values, the arrows are only shown for months that 
show improvements.    

Bias reduction can be evaluated from PM2.5 bias maps of prior (Figure 5.11a) and 

posterior  (Figure 5.11b) values. Bias maps are calculated as the model result minus a 

kriged PM2.5 observation surface from Figure 5.10a.  The data used to perform kriging 

a b 

c 
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was IMPROVE PM2.5 downloaded from The Visibility Information Exchange Web 

System (VIEWS) [2002] and USEPA AQS PM2.5 measurements [2002a, 2002b]. The 

comparison is based on an assumption that the kriged maps are accurate. The plots show 

high improvements in the eastern parts of the U.S, where large spatial locations have 

values that are approaching zero (white, light blue, or yellow areas) the positive biases 

(red) have been reduced considerably, with a few remaining locations. The western parts 

of the U.S also have considerable model bias reduction (white areas), but also have areas 

of increased model bias, where the biases shifted from unbiased (white, light blue, or 

yellow) to positively biased (red). Areas of improved performance include New York, 

Washington, D.C., Philadelphia, Atlanta, Chicago, Dallas, Salt Lake City, and Portland.  

In contrast, the surrounding spatial area around Miami and Los Angeles has shifted to a 

positive bias from a low bias and negative bias, respectively. The annual mean bias 

reduction for the whole domain was decreased from -4.37 to -3.66 µg m
-3

, and mean 

RMSE reduced from 4.3 to 3.8 µg m
-3

. Figure 5.11c shows the difference between 

posterior and prior (the difference between Figure 5.10b and Figure 5.10a). OI tends to 

increase PM2.5 in the eastern and western U.S. with a slight decrease in some spatial areas 

of the eastern U.S. The mean PM2.5 prior value increased from 4.14 µg m
-3

 to a posterior 

value of 4.84 µg m
-3

. 

5.3.5 Sensitivity test of depleting surface measurements 

gradually 

Section 5.3.5 describes a sensitivity test that gradually removes observations from all 

strata until the observations were completely removed, to understand the effect of OI on 

observation-rich and observation-poor locations. Figure 5.12 shows number of 

observations left out versus prior and posterior mean FE for the whole domain 

(repeated10 times) for the month of January. Posterior FEs (upper group of lines) are 

higher than posterior FEs (lower group of lines). 
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Figure 5.10 Annual average PM2.5 plots (2002).  (a) AQS and IMPROVE PM2.5 values 
kriged to represent a combined measured PM2.5 surface; (b) Prior Model; (c) 
Posterior based on the first random stratified-gridded cross validation method 
for each month, described in section 5.5.   

c 
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Figure 5.11 Annual average posterior bias plots (a) before OI (prior - kriged surface obs, 
Fig. 5.10b-5.10a); (b) after OI (posterior - kriged surface obs, Fig. 5.10c-
5.10a); and (c) the amount of change due to OI (Posterior - Prior). 

b 

c 
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OI improves performance statistics for all of the cross-validation repetitions, even when 

almost all data is withheld. This could prove to be useful when data assimilation is 

required over a specific area such as Iowa City, IA, or Bondvile, IL, with limited 

observational data. 

Figure 5.12 shows that the prior model FE decreases with the number of available 

measurements for evaluation. To understand this Figure 5.13a shows FE calculated from 

strata that have only a few measurements (i.e. 1-5) while Figure 5.13b shows FE 

calculated from strata that have considerable amounts of measurements (i.e. 12-16). The 

mean Fractional Error for Strata that only have a few measurements is higher than the 

mean Fractional Error Strata that have a lot of measurements. 

The sensitivity test shows that surface OI is applicable for any site with only a 

few measurements around the area of interest to considerable amount of measurements 

for large spatial locations.     

 

Figure 5.12 Number of observations left out versus prior and posterior mean FE for the 
whole domain (repeated 10 times). The test for the month of January assumed 
stratified-gridded observations withheld from equal amount of strata 

Prior FE 

Posterior FE 
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Figure 5.13 The mean FE for (a) stratum that have 1-5 measurements and (b) stratum 
that have 12-16 measurements. 

5.4 Discussion 

OI results show practical implementation of surface data assimilation towards an 

improved model estimate. Despite OI being a modest data assimilation technique (i.e. it 

provides less accuracy) compared to the more advanced data assimilation methods, it 

achieves substantial performance increases. The question arises how the methods in this 

chapter will compare to more advance data assimilation methods.  

Previous studies have also shown substantial improvements using 3D-var, with 

which Pagowski et al. [2010] showed substantial improvements over the eastern U.S. for 

correlation coefficients, RMSE, and bias. Correlation coefficients improved from 0.57 to 

0.8, RMSE decreased from 9 to 6 or 3 µg m
-3

, and bias changed from values higher than  

-4 µg m
-3

 to values lower than -4 µg m
-3

. Implementing the observational method with 

3D-var could prove to increase model performance after data assimilation. One of the 

limitations of OI is its working (or moving) window, which does not include all the 

observations in the domain simultaneously, which is one of the features of 3D-var. The 

b a 
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observational method is calculated based on the observational increments for the whole 

domain, which could be fully or accurately exploited in 3D-var.     

  Figs 5.11a and 5.11b, representing the observation biases for posterior and prior 

model estimates, show a substantial decrease from the forward model. Large spatial areas 

show that the bias is approaching zero, but this is not true for a few spatial locations, such 

as Los Angeles and Miami, where we can see an increase in model bias between the 

posterior and observation, which could be an artifact of kriging. The representation error 

decreased the effect of urban location to influence its surroundings; this was successful 

for most spatial areas. Another error term is the influence or change in elevation for the 

surrounding areas around the site measurement. If a measurement site is within a basin, 

then its influence should be limited for the surrounding areas. This can be recognized by 

using a slope parameter that indicates the degree of elevated topography around the 

measurement site.   

 Based on Pagowski et al. [2010], a cutoff was used to remove any data 

measurements recorded at or higher than 150 µg m
-3

. A more developed method would 

remove high concentrations based on their seasonal and spatial locations (i.e. a site in 

Chicago should not be treated the same as a site in Iowa City). This can be accomplished 

by an outlier detection method that identifies peak concentrations at different sites. 

Although a general approach as described to build a seasonal and spatial database for 

outliers would be time efficient, investigating high values using remote sensing data 

would prove valuable, although time consuming.           

5.5 Conclusion 

The assimilation technique was OI of PM2.5 performed on the CMAQ model grid. 

Data assimilation was used to produce monthly average PM2.5 estimates by combining 

monthly averages from prior model and surface PM2.5 values. Results were compared 

based on the three cross validation methods applied over the domain. Results show that 
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OI can improve model estimates using any of the cross validation methods. Stratified 

cross validation was the first cross validation method applied after regridding the 

observations to CMAQ domain. The observations were aggregated in a single cell when 

regridding the observations to the model domain. The second cross validation method is 

based on simple random systems applied after regridding the observations to CMAQ 

domain. The third cross validation method is based on simple random systems applied 

before regridding the observations to CMAQ domain. In each method 10% of the data 

was withheld randomly for model evaluation after data assimilation. This was repeated 

ten times with different 10% withheld data each time. Also a different set of repetitions 

was achieved using stratified-gridded systems, by removing all the data gradually (i.e. 

10%, 20% …100%), which improved model posterior estimates throughout all the 

withheld data.    

Multiple features in the OI results are noteworthy and are listed as follows: all 

three cross validation methods showed substantial posterior model improvements, which 

are very similar, indicating that the methodology applied for data assimilation is 

implemented correctly; the random repetitions in some cases increased the correlations 

coefficient from 0.3 to 0.9; all four evaluation metrics used showed a constant bias 

reduction (posterior-observation) over the forward model in all repetitions for all months 

of the year; soccer plots showed that all posterior values had an MFE lower than 20% and 

an MFB approaching zero; the annual bias evaluation of posterior and prior values 

compared to kriged surface measurements, showed overall bias reduction; removing all 

surface measurements gradually showed that all repetition managed to improve FE. 

OI substantially improved performance statistics, and improvement was nearly 

independent of the cross validation (i.e. sample withholding) strategy used to assess 

performance. Cross validation shows that the results are dependable on the data withheld 

and the data forced through data assimilation (i.e. is site dependent). Whereas there is a 

difference between each repetition, the final outcome is the same. The results, although 
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random, substantially enhance model performance on average. Data assimilation captures 

the spatial pattern of the surrounding OI areas and is not limited by the number of 

monitoring sites included. The spatial improvements include major urban cities that are 

of most interest in a variety of studies (e.g. exposure studies).  The OI model could be 

used for any data assimilation method and would prove to be a viable evaluation and 

model performance improvement tool. 
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CHAPTER 6: SUMMARY AND RECOMMENDATIONS 

6.1 Summary  

The current work was focused on improving air quality model estimates for fine 

particulate matter. This was achieved by combining model estimates with observations 

from both satellite and surface measurements using data assimilation. The availability of 

fine particles at high spatial and temporal resolutions is crucial for epidemiology studies, 

and current studies must either rely on scarce surface measurements or model 

concentrations. The current work emphasizes the importance of using both satellite data, 

which has high spatial temporal retrieval, and surface measurements, which are scarce 

and temporally limited, in order to improve model estimates through data assimilation. 

MODIS AOD datasets are relatively biased depending on the topography and the 

seasonal retrieval. Surface measurements are considered accurate, from a modeling 

perspective, and are used for model assessment and validation. The objectives of the 

current work are discussed explaining the outcomes of each.            

The first objective was to quantify how well OI works with MODIS retrieval over 

the Unites States. This was accomplished in two steps, the first step was establishing a 24 

hour daily data base for PM2.5 model estimates using CMAQ for the year 2002, this was 

covered in chapter 3. The model estimates were evaluated and compared with previous 

studies for the U.S. The evaluation was done for both rural and urban sites using 

observations from IMPROVE and STN networks, respectively. A detailed model 

evaluation of PM2.5 and its species was conducted for the whole U.S for 2002. The 

evaluation was based on dividing the U.S into six regions, based on the U.S census 

division, for 12 months of the year. This was crucial for the satellite OI evaluation, since 

the MODIS retrieval is dependent on topography and seasonal changes. For surface OI, 

the whole continental U.S. was used for evaluation over 12 months for 2002. PM2.5 

performance was affected by organic carbon and nitrate, which were both underpredicted 
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(i.e. negatively biased). Organic carbon biases reached a maximum of -3.5 to -5.5 µg m
-3

 

in the North East region in summer, and a -6.2 µg m
-3

 bias was estimated at the Pacific in 

November for urban locations. Nitrate biases reached a maximum of -6 µg m
-3

 in the 

Pacific for November at urban sites, and +2.1 µg m
-3

 in the North East in March for rural 

sites. Overall the forward model results showed an agreement with previous studies, 

thereby setting a PM2.5 database for OI with both satellite and surface measurements.       

The second step was applying satellite data assimilation with optimal 

interpolation, which is covered in chapter 4. To perform OI, AEONET and MODIS were 

re-gridded on CMAQ domain, and CMAQ-derived AOD was calculated from CMAQ 

PM2.5. The inputs for the data assimilation procedure are both monthly averages of 

CMAQ-derived AOD and monthly averages of the observation (i.e. AERONET replaced 

MODIS AOD wherever existed). Three methods were applied for averaging the model-

observation inputs and for correcting posterior PM2.5 estimates using posterior AOD 

values. The posterior model correction was the product of the prior estimate and the ratio 

of posterior to prior AOD (referred to as the scaling factor). The first method used 

monthly averages from CMAQ and MODIS, correcting the posterior values using the 

scaling factors. The second method is similar to the first, except the monthly averages 

from CMAQ were based on the satellite overpass, and only the same hours of the satellite 

retrieval over a specific location were averaged. The third method has the same averaging 

procedure as the second method, but the scaling factors are not used at full magnitude, 

only at the time of the satellite overpass, while the ±12 hours before and after that have a 

decreasing value for the scaling factor. Four sets of error settings were used for OI, two 

based on low MODIS errors and two based on high MODIS errors.    

The evaluation of model posterior estimates was similar to the evaluation of the 

CMAQ model output without data assimilation found in Chapter 3.  The results showed 

that the first method was the most effective, followed by third method, with the second 

being least effective. As a combination of regions, months, and site location, a total of 
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144 metric values were calculated, 72 for each rural and each urban location. The first 

method decreased FES values in 47 specific regions and months, versus 27 and 15 for the 

third and second methods, respectively. The remaining 55 region and months from both 

rural and urban locations were not improved by OI. The best improvement (FES 

reduction) was noticeable in the eastern parts of the US, compared to a poor OI result in 

the Pacific, especially at rural locations. OI error settings varied based on region, season 

and methods/settings applied. An annual evaluation was based on four categorizations for 

constraints on OI settings and methods, compared to the base case (i.e. no data 

assimilation). The four categories are as follows: the first constraints the methods and 

settings for each month and region; the second has one method/setting for each month, 

applied for the whole domain; the third has one method/setting for each region, applied 

for the whole year; the last has one method/setting applied for all regions and months. All 

of the four categories showed that OI managed to decrease FES values, but only offered 

unsubstantial improvements over the forward model.  The best combinations led to a 

domain average improvement in fractional error from 1.2 to 0.97 at rural locations, and 

from 0.99 to 0.89 at urban locations. The annual bias reduction based on the posterior and 

prior model estimates with kriged surface measurements, showed a bias reduction in 

areas such as West Texas and Salt Lake City, the Ohio-Indiana border, around Atlanta, 

and eastern Pennsylvania. But results also showed an increase in negative bias compared 

to the forward model estimate. 

The second objective proposed a best OI strategy for U.S explaining the results. 

This was accomplished by comparing MODIS AOD with AERONET AOD, where 

AERONET is considered to be a more accurate measurement than MODIS. The 

coefficient of determination for all AERONET sites in May 2002 was calculated, from 

west coast to east coast of the United States. Correlations were higher in the Northeast 

than that in the Pacific, giving an indication of OI week performance in the Pacific. 
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Two sensitivity tests were conducted based on the same regional/monthly 

evaluation conducted above. The first included removing AERONET data from the 

observational input, and running the data assimilation as before. The results showed 

insignificant differences based on a monthly/regional evaluation, but comparing model to 

surface measurements showed differences based on the method/settings chosen. The 

second was removing equation 4.7 effects, where the equation forced posterior values to 

be in between the observations and prior estimates. The results also showed no significant 

difference based on a monthly/regional evaluation.  

The third objective quantifies how well OI works with MODIS retrieval at a finer 

spatial resolution over the United States. To accomplish this, model runs were conducted 

based on a 2km MODIS retrieval, which is different from the 10km data available from 

NASA. The 2km data was averaged to 36km to match the model grid resolution. CMAQ 

simulations were only conducted for the first six months of the year, and the results 

showed no significant difference based on a monthly/regional evaluation. The benefit of 

having a 2km resolution is for model simulations that have finer model resolution (e.g. 

4km), and aggregating 2km to 36km showed no benefit from the new dataset.      

The final objective quantified how well OI works with surface measurements over 

the United States, which is shown in chapter five. The novel part of the surface OI was 

the calculation of the error covariance matrices for the model and observation. For model 

error covariance values (i.e. B matrix), the observational method was applied. The 

observation error covariance calculation in OI was different from the satellite calculation 

because representation error was calculated for each surface PM2.5 observation based on 

urban fraction of the measurement location. Three cross validation methods were applied 

to the data assimilation method to validate the current OI implementation using both the 

observational method and representation error to calculate the error covariance matrices 

for the model and observations, respectively. The three cross validation methods included 

using stratified random sampling after regridding observations to the model domain, 
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using the simple random sampling after regridding observations to the model domain, 

and using the simple random sampling before regridding observations to the model 

domain. Each of the cross validation methods was repeated ten times to assess variability. 

The methods withheld 10% of the measurements at a time for each repetition, cycling 

through all the measurements without replacement. The withheld data was used for 

validation and model evaluation.  

  The annual surface OI evaluation was based on the coterminous U.S. for all 

three cross validation methods. Significant model bias reduction was noticeable for all 

cross validation methods independent of month. OI improved the annual metric values of 

the correlation coefficient from 0.36 prior value to 0.76 posterior value. OI decreased the 

fractional error, normalized mean error, and RMSE from 43% (prior) to 15% (posterior), 

36% (prior) to 13% (posterior), and 5.39 (prior) to 2.32 µg m
-3

 (posterior), respectively. 

All three cross validation methods were similar and gave a conclusion that surface OI 

implementation is correctly constructed. The monthly average mean fractional error and 

mean fractional bias were significantly decreased from values exceeding 60% and -50% 

to values lower than 20% and -2%, respectively. The annual bias reduction based on 

posterior and prior model estimates with kriged surface measurements showed a bias 

reduction in most of the eastern areas and in the western parts of the U.S. It is important 

for the method to be applied in locations that have abundant epidemiological data and 

where bias reductions were noticeable, such as in cities that included New York, 

Washington, D.C., Philadelphia, Atlanta, Chicago, Dallas, Salt Lake City, and Portland. 

It is also important to note that an increase in bias was noticeable in a few areas such as 

Los Angeles and Miami.  

Another set of repetitions were done using stratified random sampling to inform 

the amount of observation data to be withheld while still providing a sufficient model 

improvement. This was accomplished by removing all the observational data gradually 

using different repetitions. Each repetition removed a percent of the observational data 
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until all the data were removed. This test was used to test the effectiveness of OI in 

situations of an abundance of data compared to situations with only a few data points. 

The results show a fractional error decrease over all prior model estimates for all 

repetitions. This indicates that surface OI can be applied to areas with minimal 

observations and still achieve posterior model bias lower than the forward model.  

From the study, we concluded that optimal interpolation schemes to constrain 

PM2.5 over the United States have proven to be successful by running data assimilation 

with satellite or surface measurements. Although surface OI has proven to be far superior 

to satellite OI, the spatial and temporal limitations of the surface measurement indicate a 

need for the use of satellite retrievals. MODIS retrieval (level 2 data) at 10km is 

subjected to biases and noise, which depend on the topography and seasonal retrieval. 

The results over the eastern parts of the continental U.S. showed improvements in 

posterior model estimates, but can be described as modest improvements in most 

performance metrics. Satellite OI is recommended for the eastern parts of the western 

region in the U.S. Surface OI showed substantial improvements in the posterior values 

over the prior model. This is credited to the implementation of the observational method 

and the representative error in the calculation of the error covariance matrices for the 

model and observations, respectively. The three cross validation methods proved that the 

implementation described improved model performance in all the methods. The surface 

OI can be applied towards the EPA five year study to improve model performance for 

generating PM2.5 concentrations that can be used in epidemiological studies.                     

6.2 Future work       

The ability to combine both satellite and surface OI, if possible, could provide 

substantial improvements for areas in between scarce surface-measurement locations. 

Problems combining both measurements are due to MODIS errors. Surface 

measurements are considered accurate; therefore site locations and their surrounding 
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areas are influenced by the surface OI.  Satellite data will add noise to the system due to 

the random errors in the satellite retrievals, which could increase the model bias shown in 

the surface OI implementation. To combine both measurements, the random errors have 

to be removed from MODIS retrieval. This is accomplished by using quality-assured data 

(referred to in section 4.18). The noise-free data could substantially decrease the MODIS 

AOD spatial retrieval by 50% or more, but could still provide valuable spatial coverage 

for the locations without nearby surface monitors. Also MODIS data can be improved by 

using land regression models [Kumar, et al., 2008, Schaap, et al., 2009, Engel-Cox, et al., 

2005] with AERONET data, land use and land cover, snow cover, and meteorological 

data (e.g. temperature, pressure, relative humidity, wind speed, and wind direction). 

Based on this thesis research, I recommend two procedures. The first takes into account 

that the surface measurements are accurate, giving surface priority over satellite OI. 

Therefore OI is first established with the surface measurements and then the satellite data 

assimilation covers areas that did not have any effect from surface OI, or had an increase 

in model bias. This procedure can be used for the raw MODIS data (without quality 

assurance) and areas of model bias reduction can be used to cover areas with no bias 

reduction. The second procedure includes combining both AOD and surface PM2.5 with 

respect to the transformation between model and observation space. Surface 

measurements should have priority over satellite retrieval, and MODIS AOD should be 

replaced by surface PM2.5 at site locations. Both respective covariance matrices that 

include the observation representation error should be accounted for. The two procedures 

could prove to be an improvement over the current performance shown in the current 

work, and this suggestion could serve as a goal of future research. 

In future work, the EPA study of surface OI methods and application will be 

applied over a five-year run simulation using WRF-CMAQ over the continental U.S. The 

domain has three nested areas, 36km, 12km, and 4km. The 4km nested area only applies 
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for one location over Chicago. Also satellite OI can be applied for the 4km resolution 

area, using 2km retrieval data described in section 4.6.     
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